
 
 
 
 
 
 
 
 
 

 

Ratifiable Collusion and Bidding Systems in Procurement 
 
  
 

丹野 忠晋  

跡見学園女子大学准教授 

 

 

 

CPDP-37-E February 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPRC Discussion Paper Series 

 

Competition Policy Research Center 
Japan Fair Trade Commission  

1-1-1, Kasumigaseki, Chiyoda-ku, TOKYO 100-8987 JAPAN 

Phone:+81-3-3581-1848 Fax:+81-3-3581-1945 

URL:www.jftc.go.jp/cprc.html 

E-mail:cprcsec@jftc.go.jp 



Ratifiable Collusion and Bidding Systems in

Procurement

Tadanobu Tanno∗

Toulouse School of Economics (I.D.E.I.), 21 allee de Brienne, 31000 Toulouse, France

Atomi University, 1-9-6 Nakano, Niiza, Saitama 352-8501, Japan

December 23, 2008

Abstract

This study explores stability in efficient collusion in government

procurement auctions. In first- and second-price auctions with inde-

pendent private values, we look at the possibility of vetoing collusion

mechanisms and the learning of the other bidders after vetoing. The

collusions in first-price auctions in simple case and second-price auc-

tions are stable against the competition after a potential veto to take

part in bid-rigging.
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1 Introduction

Bid-rigging in procurement auctions is serious problem in many countries

with regard to maintaining competition . In Japan, cases of collusion in pro-

curement auctions represent the majority of violations in the Antimonopoly

Act. While many authors study collusion in auctions, we need undertake

further investigation to gain useful insights into methods for to detecting

and preventing bid-rigging. This study considers the effects of two auction

formats on collusive behavior. We show that collusions in both these auc-

tions are robust even if bidders have an option to deviate from bid-rigging

and compete in auctions after vetoing. In the terms of auction theory, our

result also adds knowledge of the similarity between these auctions.

Graham and Marshall (1987) extensively analyze collusion in second-

price auctions for selling an item, and Mailath and Zemsky (1991) extend

their model to asymmetric bidders. McAfee and McMillan (1992) analyze

an efficient collusion in first-price auctions. Robinson (1985) compares pos-

sibilities to collude in first-price and second-price auctions. Holt (1980)

shows that the choice between first- and second-price auctions gives sig-

nificant impact on the expected cost of procurement when bidders are risk

averse. There are a lot of empirical literature about collusion in procurement

auctions. For example, Bajari and Ye (2003) study a method to identify bid

rigging and find asymmetries in collusive behaviors as well as competitive

bidder’s costs due to location or capacity constraint.

In these theoretical models each bidder takes part in bid-rigging if incen-

tive and individually rational conditions for collusion are satisfied. In reality,

we observe breakdowns of collusion and thereafter competitive behavior.1

A bidder has an opportunity to veto bid-rigging, and other riggers may be

able to learn the cost information of the vetoer from his veto.2 Cramton

1While there are many triggers of breaking cartels, Levenstein and Suslow (2006)

argue in their collected data that the mean duration of a cartel is 17.2 years and the

median is 8 years.
2Hinloopen and Soetevent (2005) carried out experimental analysis on a leniency

program in a Bertrand competition setting. Winning defectors among the subjects fre-
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and Palfrey (1995) present an elaborate concept of ratifiability in a mecha-

nism design setting to analyze such situations. If a proposed mechanism is

robust against some status quo mechanism after a veto, the mechanism is

called ratifiable. They investigate the ratifiability of the monopoly outcome

mechanism that is analyzed in Cramton and Palfrey (1990) against Cournot

competition in two firms and linear demand. Since a low-cost firm prefers

Cournot competition to collusion, collusion for the monopoly outcome is

not ratifiable against the status quo. In terms of learning type after a veto,

collusion in the quantity competition is not stable.

Tan and Yilankaya (2007) consider the ratifiability problem of bidder

collusion in second-price auctions for selling an object with participation

cost. The collusion in the auctions they consider is not ratified against the

post second-price competitive auctions. However, we show that collusion

in second-price auctions for buying an object with no participation cost is

ratifiable against the post auctions.

In this study we investigate the possibilities of colluding in first-price

and second-price procurement auctions. A government procures an item

from potential sellers in these auctions with no participation cost. The

former auction corresponds to sealed low-bid auctions that governments

commonly adopt. When values are private, the latter is strategically equiv-

alent to open descending auctions. In our assumptions, the collusion in

first-price auctions with uniform distribution and two bidders and general

second-price auction are ratifiable. Bid-rigging in procurement auctions is

relatively stable. When a cartel is strong, even if a procurer changes a

sealed bid auction to an open auction, we expect that the cartel remains

effective against the reform. Since the collusion in the Cournot competi-

tion is ratifiable (Cramton and Palfrey (1995)), auction environments are

more vulnerable against collusion than the quantity competition. To detect

and prevent bid-riggings, procurers in many countries reform bidding sys-

tems and competition authorities use some tools, e.g., leniency programs,

quently apply leniency to protect their profits. The defection and veto on collusion may

bring some information about the exerciser.
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etc. Our conclusion partially justifies these efforts to weaken incentives to

commit bid-riggings. Since the participation cost restores competition (Tan

and Yilankaya (2007)), their conclusion and our analysis imply that some

kind of a burden for bidders before auctioning may be a key to preventing

collusion.

Section 2 presents basic models and preliminary results compared with

the standard auction literature. In Section 3 we provide an efficient collusion

mechanism. Section 4 introduces ratifiability. We obtain ratifiability results

in first-price auctions in Section 5 and second price-auctions in Section 6.

Section 7 concludes.

2 Model and Noncooperative Auctions

A government seeks to buy an item from N potential sellers. Buyer’s reserve

price is r. When the item is a public work, we may consider the reserve

price to be an engineering cost estimate for the project. If the lowest bid is

above r in each auction, the government does not buy it. In each auction,

the lowest price bidder becomes a winner if the price is below or equal to the

reserve price. When a tie occurs, to avoid the non-existence problem for an

asymmetric case in the first price auction, we adopt status quo tie-breaking

rule.3 In this case the object is surely given to one of the bidders who

quote the lowest price. In a first-price auction, a winner receives his quoted

price, but, in a second-price auction he receives a price equal to the second

lowest price if the price is below or equal to the reserve price. Otherwise,

he receives the reserve price.

The sellers’ reservation utility is normarized to 0. They are risk neutral.

Our model is a symmetric independent private value one. Each bidder i has

cost ci that is distributed according to a common distribution function F on

[c, c] with density function f , which is strictly positive on the domain. Each

bidder’s cost is his private information. He infers the others costs from the

3See Tanno (2008) for more detail. In symmetric environment or second-price auc-

tions, the tie-breaking rule also works for equilibrium.
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prior probability.

Here we consider a competitive first-price auction as a benchmark. We

assume that all bidders use common nondecreasing strategy p(c) < r for a

cost c. Let π1(c|r) be a profit for a representative supplier with cost c in

the first-price auction. The standard argument implies

π1(c|r) = max
p

(p− c)(1− F (p−1(p)))N−1

where p−1(·) is an inverse function for p(·). By the envelope theorem and

p−1(p) = c,

dπ1(c|r)
dc

= −(1− F (c))N−1.

By integrating the above profit, we obtain the bidder’s equilibrium profit

π1∗(c|r):

π1∗(c|r) =





0 (if c > r)
∫ r

c
(1− F (x))N−1dx (if c ≤ r)

(1)

Substituting π1∗(c|r) in the objective function, the bidding function given

the reserve price r is

p1∗(c|r) =





No (if c > r)

c +
∫ r

c
(1−F (x)

1−F (c)
)N−1dx (if c ≤ r)

where No means not participating.

Next, we consider a competitive second-price auction. By the standard

argument, submitting true cost is a weakly dominant strategy for a bidder

whose cost is not above the reserve price. Then, the equilibrium bid p2∗(c|r)
is given by

p2∗(c|r) =





No (if c > r)

c (if c ≤ r).

Let π2∗(c|r) be a profit for a representative supplier with cost c in the

second-price auction. Since the density of the lowest order statistic among

5



N − 1 is (N − 1)(1− F (x))N−2f(x), a profit for a bidder with cost c ≤ r is

given by

π2∗(c|r) = (r − c)(1− F (r))N−1 +

∫ r

c

(x− c)(N − 1)(1− F (x))N−2f(x)dx.

(2)

Note that the first term represents the profit in the case where all the rivals

bid r or do not take part in the auction. Of course, the situation in this

section satisfies the conditions under which the revenue equivalence theorem

holds. A profit π1∗(c|r) for cost c supplier in the first-price auction is equal

to (2).

We briefly study welfare analysis in the auctions.4 The item that the

government purchases has a social benefit S. However, the procurement

entails some distortionary cost λ > 0 to raise a fund to buy it through

taxation. When the payment made by the government to a bidder is p, the

consumer surplus is S − (1 + λ)p. Adding expected profits for all firms, the

welfare W ∗ can be easily computed:

W ∗ = N

∫ r

c

(
S − (1 + λ)c− λ

F (c)

f(c)

)
(1− F (c))N−1f(c)dc.

Note that by the revenue equivalence theorem the welfare is identical for

the two auctions.

We can choose the optimal reserve price in the way that Myerson (1981)

analyzes optimal auctions with a regularity condition. Let

J(c) = (1 + λ)c + λ
F (c)

f(c)

be the virtual cost with shadow cost. We assume that the virtual cost is

monotonically increasing in c and S > J(c). Just as Bulow and Roberts

(1989) recognize a virtual valuation in auctions for a seller as an expected

marginal revenue, we think J(c) as the expected marginal cost generated if

a bidder of type c supplies the item. Since the government faces a zero-one

problem about whether to procure one item or not under uncertainty, we

4See Miura (2003) for further details on the following analysis in this section.
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can also regard the social benefit S as a “marginal social benefit.” Actually,

differentiating W ∗ leads to

W ∗′ = N(S − J(r))(1− F (r))N−1f(r).

If S < J(c), to maximize the social welfare, the government attempts

to set marginal benefit equal to marginal cost as the way to select reserve

price r∗ such that S = J(r∗). Namely,

S = (1 + λ)r∗ + λ
F (r∗)
f(r∗)

. (3)

If the social benefit is sufficiently large such that S ≥ J(c), the optimal

reserve price is r = c. In this case it is a corner solution and the government

invites all types of firms.

3 Collusion

We consider an all-inclusive collusion with transfer. All bidders collude and

coordinate their behavior through the direct mechanism as follows. Before

an auction, the cartel members report their costs to the mechanism. If all

bidders’ reported costs are above or equal to the reserve price, the cartel does

not bid in the auction. If at least one bidder’s reported cost is lower than

the reserve price, the bidder making the lowest report quotes the reserve

price, the others bid a price higher than the reserve price, and the lowest

report bidder sells the item by the price r and transfers his revenue equally

to each losing bidder. If the collusion scheme is feasible, the outcome in the

first-price auction is the same as that in the second-price auction.

McAfee and McMillan (1992) show that there exists such a mechanism

that is incentive-compatible, ex post efficient, and ex post budget balanced.

The collusive payoff πm for a firm that has cost c and reports ĉ is given by

πm(ĉ, c|r) =(r − c− T (ĉ))(1− F (ĉ))N−1+
∫ ĉ

c

T (x)

N − 1
· (N − 1)(1− F (x))N−2f(x)dx (4)
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where T (ĉ) is the total transfer to the other losing bidders and (N − 1)(1−
F (x))N−2f(x) is the density of the lowest cost among N − 1 bidders. By

the revelation principle without loss of generality we can restrict attention

to truthful report. By McAfee and McMillan (1992), we easily obtain an

incentive compatible transfer.5

Lemma 3.1 (McAfee and McMillan (1992)) In a symmetric, ex post

efficient, ex post budget balance, and an incentive compatible cartel, the total

transfer from a winning cost-c bidder to losing bidders is given by

T (c) =

∫ r

c

(r − x)
(N − 1)(1− F (x))N−1f(x)

(1− F (c))N
dx for c ∈ [c, r).

Proof: By Guesnerie and Laffont (1984), to show incentive compatibility

we check two conditions:

∂2πm(ĉ, c|r)
∂ĉ∂c

∣∣∣
ĉ=c

> 0 and
∂πm(ĉ, c|r)

∂ĉ

∣∣∣
ĉ=c

= 0.

By (4),

∂πm

∂ĉ
= −T ′(ĉ)(1− F (ĉ))N−1 − (N − 1)(r − c− T (ĉ))(1− F (ĉ))N−2f(ĉ)+

T (ĉ)(1− F (ĉ))N−2f(ĉ).

We easily get ∂2πm(ĉ, c|r)/∂ĉ∂c > 0. Furthermore,

∂πm

∂ĉ

∣∣∣∣
ĉ=c

= −T ′(c)(1− F (c))N−1 + T (c)N(1− F (c))N−2f(c)−

(N − 1)(r − c)(1− F (c))N−2f(c)

= (N − 1)(r − c)(1− F (c))N−2f(c)

−N(N − 1)(1− F (c))−2f(c)

∫ r

c

(r − x)(1− F (x))N−1f(x)dx

+N(N − 1)(1− F (c))−2f(c)

∫ r

c

(r − x)(1− F (x))N−1f(x)dx

−(N − 1)(r − c)(1− F (c))N−2f(c) = 0.

5We note that the transfer T in Lemma 3.1 is symmetrical with the one in Theorem 3

in McAfee and McMillan (1992).
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The other properties are obvious.

When ĉ = c, we simply write πm(c|r). We characterize collusive payoffs.

Lemma 3.2 In a symmetric, ex post efficient, ex post budget balance, and

an incentive compatible cartel, the expected payoff for a cost-c bidder is given

by

πm(c|r) =





πm(r|r) (if c > r)

πm(r|r) +
∫ r

c
(1− F (x))N−1dx (if c ≤ r)

(5)

where

πm(r|r) =

∫ r

c

(r − x)(N − 1)(1− F (x))N−2F (x)f(x)dx.

The proof is contained in Appendix A. We note that the second term of

πm(c|r) for c ≤ r is equal to the noncooperative payoff (1). This stems

from incentive compatibility.6 Since the mechanism must give an incentive

to the most inefficient firm to tell the true cost, cost-r firm is given by a

transfer and his profit is positive.7 Since the density of the second-lowest

order statistic among N is N(N −1)(1−F (x))N−2F (x)f(x), the fixed term

πm(r|r) is equal to the expected value of 1/N times the profit that the

second most profitable firm would earn when he quotes price r on the item.

Therefore, the highest-cost firm must receive an equal share of the expected

profit when the second-lowest-cost firm supplies the item. The winning

bidder’s total rent for the auctions is the difference between the winner’s

(lowest) cost and the second-lowest cost. The winner takes the rent. The

6By the theorem in Guesnerie and Laffont (1984), we need to have dπm(c|r)/dc =

−(1−F (c))N−1. The derivative is the same as that of first-price auction in the envelope

theorem.
7The result is similar to Lemma 4 in Cramton and Palfrey (1990) for the monopoly

mechanism and a formula in the proof of Theorem 4 in McAfee and McMillan (1992) for

a seller’s auction.
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remaining surplus, which is the difference between the reserve price and the

second lowest cost, is split equally among the cartel members (including the

winner). This collusion mechanism can be implemented by a “preauction

knockout,” which Graham and Marshall (1987) analyze.

Obviously, πm(r|r) > 0 in Lemma 3.2 and πk∗(r|r) = 0 for noncoopera-

tive profit in each k. The collusive profits are higher than the noncooperative

profits for each cost.

Lemma 3.3 πm(c|r) > πk∗(c|r) for k = 1, 2 and all c ∈ [c, c].

We assume that the government knows the existence of the cartel, but

cannot crack down on it. Welfare Wm under the collusive scheme is reduced

to

Wm = N

∫ r

c

(S − λr − c) (1− F (c))N−1f(c)dc.

We assume the concavity of Wm. If the government optimally responds to

the cartel, the optimal anticartel reserve price rm is given by

S = (1 + λ)rm + λ
1− (1− F (rm))N

N(1− F (rm))N−1f(rm)
.

The formula is similar to (3). We can deduce the implication from the

latter. Remember that in the case of competitive bidding the problem is to

find a “marginal supplier” at an appropriate reserve price. Since under the

collusion all N bidders potentially quote a reserve price, the probability that

some bidder sells the item at price rm is 1− (1−F (rm))N and its density is

N(1 − F (rm))N−1f(rm). The ratio of the probability to the density is the

second term in the right-hand side. This implies that the anticartel reserve

price decreases with the number of cartel members and is lower than the

optimal reserve price under the same shadow cost λ.8

4 Ratifiability

In the previous section we see that collusive profits are higher than compet-

itive bidding profits. However, we sometimes observe a voluntary deviation
8See Graham and Marshall (1987) and McAfee and McMillan (1992) for more details.
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from bid-riggings. While deviators may be threatened by a competition

authority, there may be a problem with the stability of cartels.

Since a winning deviator does not need to pay transfers to losers in

bid-riggings, a low-cost firm with a high possibility of winning may prefer

competitive auctions to bid-rigging. Although the collusion scheme is in-

centive compatible, a competition after the deviation could possibily change

bidders’ beliefs. The others can infer his cost by observing his deviation.

They may anticipate that he has low cost. Thus, they may leave the auc-

tion. If he successfully makes them believe him to be low cost, he may

gain a monopoly profit. In the following sections we introduce the concept

of ratifiability to analyze the possibility of the above situation. We exam-

ine whether a difference in auction formats can influence collusion in the

presence of the opportunity not to take part in collusion and to learn from

deviation.

Cramton and Palfrey (1995) formulate the following two stage game

to present ratifiability in a mechanism design environment. After firms

know their own costs, at the first stage each firm votes for the proposed

mechanism (bid-rigging). At the second stage the mechanism or the status

quo game (first- or second-price auctions) is played. If they are unanimously

for the mechanism, it is played. Otherwise, the status quo is played with

the knowledge that some player vetoes the mechanism. Therefore, when

firm i decides whether to veto the mechanism, he must consider how the

others’ beliefs about i might change as a result of the veto. There are many

possibilities about beliefs and refinement concepts.9 One of possibilities

for beliefs is passive belief. When we adopt passive belief as off-equilibrium

belief and in equilibrium the mechanism is preferable to the status quo game

for any type for any player, unanimous ratification of the mechanism is a

9See Cramton and Palfrey (1995) for more detailed discussion. To avoid the refinement

argument, Caillaud and Jehiel (1998) consider the payoff after vetoing as the smallest

interim payoff where the minimum is taken over all possible beliefs held by the other

buyers of his type.
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sequential equilibrium in the two stage game.10 In this case the mechanism

is called individually rational relative to the status quo game. By Lemma

3.3 the bid-rigging mechanism is individually rational relative to competitive

auctions.

However, this cannot formulate the learning from a veto. We now in-

troduce more subtle beliefs and a refinement concept. If firm i vetoes the

mechanism, the others believe that a type of i is in Vi ⊂ [c, c] and each

type in Vi vetoes with positive probability. We call such a set a Vi veto

set for i. The veto belief Fv is induced by the prior F and the veto prob-

abilities. Let πk∗
i (c|r) be cost-c bidder i’s payoff in post competitive k-

auctions (k = 1 for first-price and k = 2 for second-price auctions) and

Uk
i (c|r) = πm(c|r)− πk∗

i (c|r).11

Definition 1 Fix k = 1 or 2. The veto set Vi is credible about i relative to

the mechanism and the status quo game k if there exist an equilibrium in

the status quo game, veto probabilities, and posterior beliefs such that

(1) there exists a positive veto probability in some type,

(2) c ∈ Vi for Uk
i (c|r) < 0,

(3) c /∈ Vi for Uk
i (c|r) > 0,

(4) the posterior beliefs of the others about i are updated by his prior belief

and veto probabilities using Bayes’ rule.

A type in a credible veto set has an incentive to veto the mechanism. By

his veto the others believe that his type is in Vi and he benefits from it.

We note that we put no restriction on types that are indifferent between

vetoing and not. The ratifiability concept depends on the indifference.

Definition 2 Fix k = 1 or 2. The incentive compatible mechanism is rati-

fiable against the status quo game k if the mechanism is individually rational

relative to the status quo game and for all i either
10See Proposition 1 in Cramton and Palfrey (1995).
11Payoffs depend on a post-veto strategy and belief. However, by symmetry and sim-

plicity, we suppress strategy and belief in the expression.
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(1) there does not exist a credible veto set for i, or

(2) there exists a credible veto set such that Uk
i (c|r) = 0 for all c ∈ Vi

under a corresponding equilibrium and beliefs.

Cramton and Palfrey (1995) show that a monopoly outcome mechanism

against Cournot competition in two firms and a linear demand case is not

ratifiable. Tan and Yilankaya (2007) present the non-ratifiability result of

bidder collusion in second-price auctions with participation cost for selling

an object. We will show that the cartel mechanism against competitive first-

or second-price auctions is ratifiable. The result implies that the bid-rigging

is relatively stable.

5 Ratifiability in First-Price Auctions

To analyze ratifiability we must be cautious of asymmetry induced by belief

change. Analysis of asymmetry in first-price auctions is especially difficult

task and was not done until the late 1990s. Maskin and Riley (2000a)

compares revenues between first- and second-price auctions. Maskin and

Riley (2000b) treats the monotonicity of an equilibrium bid. Lebrun (1999)

shows the existence of equilibrium. Moreover, there are few explicit solu-

tions. Griesmer, Levitan, and Shubik (1967), Kaplan and Zamir (2007),

and Tanno (2008) give explicit solutions to an auction with two bidders and

uniform distribution.

In this case, we cannot use the standard technique to induce an equilib-

rium in symmetric auctions. We must directly solve differential equations

with boundary conditions. Since it is difficult to obtain a general solu-

tion in asymmetric first-price auctions, we prove a ratifiable result in the

first-price auction with two suppliers and uniform distribution. In the next

section we examine differential equations and boundary conditions to solve

the ratifiability problem.
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5.1 General First-Order Condition

For the moment, we consider asymmetric bidders with a cost ci that is dis-

tributed according to a distribution function Fi on a support [ci, ci]. Using

the inverse bid function ci = ci(pi), general first order conditions are given

by

−(pi − ci)
∑

j 6=i

F ′
jc
′
jΠk 6=i,j(1− Fk) + Πj 6=i(1− Fj) = 0 for i = 1, . . . , N

where F ′
j , c′j, and Fk are evaluated at pi, cj(pi), and ck(pi). Following Le-

brun (1999), Maskin and Riley (2000a), and Bajari and Ye (2003), equilib-

rium inverse bid functions are characterized by solutions to these differential

equations

c′i =
1− Fi

(N − 1)F ′
i

(∑

j 6=i

1

p− cj

− N − 2

p− ci

)
for i = 1, . . . , N

where ci, cj, Fi, and F ′
i are evaluated at p and ci(p) over (p, p) satisfying

some boundary conditions.

Since the belief for the vetoer is updated to some distribution function

Fv with a veto set Vv = [l, h], which is a subset of the original support, and

that of the other sellers is unchanged,12 the differential equations can be

reduced to

c′v =
1− Fv

(N − 1)F ′
v

(∑

j 6=v

1

p− cj

− N − 2

p− cv

)
, (6)

c′i =
1− Fi

(N − 1)F ′
i

(∑

j 6=i

1

p− cj

− N − 2

p− ci

)
for i 6= v.

Analytic solutions for general distributions are rare in first-price auctions.

Following Kaplan and Zamir (2007) and Tanno (2008), we derive a ratifia-

bility result for a simplified auction in the case of two suppliers and uniform

distribution.
12By Propositions 1 and 3 in Maskin and Riley (2000b), the support of the distribution

of winning bids is an interval and the c.d.f. of the winning bids is continuous on the

interval. This implies that we may concentrate our attention on an interval for an

updated belief.

14



5.2 Two bidders and Uniform Distribution Case

We consider two bidders case. Each prior cost is uniformly distributed on

[0, 1]. In status quo game a cost for ratifier is distributed according to

Fr(c) = c. We consider a candidate for veto set Vv = [l, h] where 0 ≤ l <

h ≤ 1. The ratifier’s belief about the vetoer is updated by Bayes’ rule to

Fv(c) = (c− l)/(h− l). By (6), a system of differential equations are

(p− cv)c
′
r(p) = 1− cr(p) and (p− cr)c

′
v(p) = h− cv(p). (7)

There are two types of solutions. First, we consider a “linear bid” as a

particular solution in (7). Second, we consider another nonlinear solution

that Kaplan and Zamir (2007) extensively analyze. In each equilibrium we

cannot find a credible veto set for any reserve price.

Note that if the vetoer’s equilibrium bid is equal to a reserve price, such

a high-cost vetoer has no incentive to take part in the auction. The cartel

mechanism ensures a positive profit for a high-cost bidder. Therefore, we

may focus on a veto set in which the reserve price is not effective. Lemma

3.2 gives us the collusive payoff:

πm(c|r) = πm(r|r) +

∫ c

c

(1− F (x))dx =
1

6
(r3 − 3(r − c)2 + 6(r − c)). (8)

Of course, any cartel member likes a high reserve price:

∂πm(c|r)
∂r

=
1

2
((r − 1)2 + 2c + 1) > 0 for all c. (9)

Since we show that there does not exist any credible veto set and each cost

type in a credible veto set is better off in the status quo game than in the

cartel mechanism, it is sufficient to consider the payoff difference at the

lowest reserve price.

The linear solution for the above differential equations is

cv(p) = 2p− 2 + h

3
and cr(p) = 2p− 1 + 2h

3
.

Since this solution is a particular one, we need no boundary condition.13

The price that the highest cost vetoer bids becomes the highest equiblirum
13Note that when h = 1, the solution is equal to those for symmetric case.
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cost c
2h+1

3h3l−h+1
3l

bid p

p = 2h+1
3

p = h+3l+2
6

pv = c
2

+ h+2
6

pr = c
2

+ 2h+1
6

1

1
0

1111

r

Figure 1: Two bidders and uniform distribution case in the first price auc-

tion

price p. We assume r ≥ p by the above reason. While any ratifier who

has cost higher than the cost corresponding to this highest price has zero-

probality of winning, in equilibrium this type of the ratifier still follows cr.

By the status quo tie-breaking rule in favor of vetoer a low-cost ratifier who

can set a price below the lowest price p the vetoer bids quotes the price p

and always beats any type of the vetoer except l-type vetoer.14 By taking

account of conditions for high and low ends, we obtain the proposition.

Proposition 5.1 Assume that the status quo tie-breaking rule in favor of

vetoer, l ≥ 0, h ≤ 1, and r ≥ 2h+1
3

in the first-price auctions with uniform

14See Tanno (2008) for the reason why the status quo tie-breaking rule restores equi-

librium in asymmetric auctions.
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distributions. The following strategies constitute equilibrium:

pv =
c

2
+

h + 2

6
for c ∈ [l, h],

pr =





c
2

+ 2h+1
6

for c > 3l−h+1
3

p = h+3l+2
6

for c ≤ 3l−h+1
3

.

See Tanno (2008) for the formal proof of the equilibrium bids. Prices

and costs for each bid function are depicted in Figure 1.15 Kaplan and

Zamir (2007) also consider this type of solution. However, Proposition 5.1

shows the existence of a linear solution for a wider range of parameters than

that in Kaplan and Zamir (2007).

The vetoer’s profit derives from Proposition 5.1:

π1∗
v (c|r) =

(h + 2− 3c)2

18
for c ∈ [l, h].

Next, we compare a collusive payoff with the status quo game payoff. Ac-

cording to (9), it suffices to consider the possible minimum reserve price.

We substitute r(h) = (2h + 1)/3 in the supposition of Proposition 5.1 into

(8) and gets the payoff difference:

U1
v (c|r(h)) = πm(c|r(h))− π1∗

v (c|r(h))

=
1

162
(8h3 − 33h2 + 6(7 + 27c)h− 162c2 + 10) for c ∈ [l, h].

We differentiate the above expression with respect to h:

∂U1
v

∂h
(c|r(h)) =

1

27
(4h2 − 11h + 7 + 27c) =

1

27

(
4

(
h− 11

8

)2

+ 27c− 9

16

)
.

We see that ∂U1
v

∂h
(c|r(h)) decreases in h for a feasible interval. The value at

the maximum upper end h = 1 is

∂U1
v

∂h
(c|r(1)) = c ≥ 0 for all c.

15We observe that when each bidder takes part in auctions and their behavior is de-

scribed by the differential equations, the ratifier is more aggressive than the vetoer since

pv(c) = c/2+(h + 2)/6 > pr(c) = c/2+(2h + 1)6. The observation confirms proposition

3.3 in Maskin and Riley (2000a).
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Therefore, we obtain

∂U1
v

∂h
(c|r(h)) ≥ 0 for all c ≤ h for all h ∈ (0, 1].

Then ,we can calculate the minimum of the difference of payoffs by taking

limit of h and c to 0.

lim
h,c→0

U1
v (c|r(h)) =

5

81
> 0.

Therefore, we conclude that for any veto set Vv and reserve price r,

U1
v (c|r) > 0 for any c ∈ Vv.

In this type of equilibrium, there is no credible veto set.

By following Kaplan and Zamir (2007) we analyze the payoff difference

at another equilibrium. This solution is not linear and generalizes the so-

lution that Griesmer, Levitan, and Shubik (1967) consider. The boundary

condition is a little different from that for the previous linear solution.16

Proposition 5.2 (Kaplan and Zamir (2007)) If the probability of win-

ning is zero, each bidder bids his own cost. Assume that l ≥ 0, h ≤ 1,

and r ≥ 2h+1
3

in the first-price auctions with uniform distributions. The

equilibrium inverse bid function for vetoer and ratifier is given by

cv(p) = h +
(1− h)2

(1 + h− 2p)Kve
1−h

1+h−2p + 4(1− p)
,

cr(p) = 1 +
(1− h)2

(1 + h− 2p)Kre
− 1−h

1+h−2p + 4(h− p)
,

where

Kv = −
(1−h)2

h−l
+ 4(1− p)

2(p− p)
e

1−h
2(p−p) , Kr = −(1− h)2 + 4(h− p)

2(p− p)
e

1−h
2(p−p) ,

p =
1 + h

2
, and p =

(1 + h)2

4(1 + h− l)
. (10)

The costs for boundaries of the bids are cv(p) = h, cv(p) = l, cr(p) = 0, and

cr(p) = p.

16See Kaplan and Zamir (2007) for the boundary condition for more detail.
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See Proposition 1 in Kaplan and Zamir (2007) for the proof. While they

analyze a first-price auction for selling an item, we can derive solution of

an auction for buying an item in a similar way. While this equilibrium bid

seems complicated, we can prove non-existence of a creadible veto set in

this equilibrium to focus on the payoff at the lowest vetoer’s cost. It is

enough to show no existence of higher payoff in the competitive auction at

the lowest cost for any veto set. See Appendix B for detailed proof.

By the investigation of the payoff difference in two equilibria, we con-

clude that there does not exist an equilibrium and posterior belief in the

status quo game in which the vetoer is better off in the status quo game

than in the collusion. We prove the following proposition.

Proposition 5.3 In first-price auctions with two bidders and uniform dis-

tribution, the collusion mechanism is ratifiable against the status quo of

competitive auctions.

6 Ratifiability in Second-Price Auctions

In this section, we show that the collusion mechanism in a second-price

auction is ratifiable. Compared with a first-price auction, we treat the

general setting in second-price auctions. We consider the cases for N sellers

and general support. When a bidder v vetoes, other bidders update their

beliefs about the vetoer in the following way: the support of belief for

the vetoer is V = [l, h] ⊂ [c, c]. The updated belief is Fv(c) = (F (c) −
F (l))/(F (h)− F (l)). As we analyze the first-price auction, a bidder whose

cost is above a given reserve price does not veto the collusion mechanism.

We assume that the upper end is below or equal to the reserve price.

In the post-veto auction, a candidate for equilibrium is a weakly domi-

nant strategy as is usual in second price auctions. In the case where ratifier

i’s cost is over h, the ratifier surely believes that he will lose to any vetoer

and cannot gain from participation. Thus, choosing No is a weakly domi-

nant strategy for this ratifier in this case. Using such a cut-off strategy, the
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rhl

Difference of payoffs

πm(r|r)

U2
v (c|r) = πm(c|r)− π2∗

v (c|r)

cc

k

Figure 2: Payoff difference between collusion and post-veto auction

equilibrium p2∗ = (p2∗
v , p2∗

i ) in the post-veto auction is:

p2∗
v (c) = c for c ∈ [l, h],

p2∗
i (c) =





No if c ≥ h

c if c < h for i 6= v.

Even if a ratifier’s cost is below l, he certainly wins the auction by bidding

his true cost.17

Proposition 6.1 In the second price auctions the collusion mechanism is

ratifiable against the status quo of competitive second price auctions.

See Appendix C for the proof. The difference U2
v of the payoffs corre-

sponds to the bold line in Figure 2. Even if the vetoer makes the ratifiers

stay out, he only gets a payoff equal to the bid-rigging payoff in this case.

Since the vetoer does not strictly gain by vetoing in any case, the candidate

veto set is not credible. Since the equilibrium p∗ is a weakly dominant strat-

egy, there is no credible belief and no strategy pertaining to it. Our result

is in contrast to the ‘no ratifiability’ result in Tan and Yilankaya (2007).

The difference stems from the participation cost. Tan and Yilankaya (2007)

17In the model of Tan and Yilankaya (2007) which consider a participation cost, the

threshold of entry is different from the highest cost for the vetoer.
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shows that if after realization of cost, a participation for bidding entails a

positive entry cost for bidders, the collusion mechanism in the second-price

auctions is not ratifiable against the status quo competitive auctions.

We explain the intuition behind the logic of the non-ratifiability result.

A positive entry cost induces ratifiers not to take part in the auction for

some costs. Let k be a threshold cost for entry. Since revenue for a winning

cost-h ratifier could be at most h and his profit with participation cost

would be not positive, k is strictly lower than h. Between h and k, without

ratifiers, the vetoer gets more profit in competitive auction. If we choose a

veto set in this area, we can show that such a veto set is credible. So, the

collusion is not ratifiable. The correspondent payoff difference is depicted

by the dotted line in Figure 2.

7 Concluding Remarks

We formulate an efficient collusion scheme in first- and second-price auc-

tions for buying an object. In a procurement auction setting, to bring the

possibility of vetoing collusion and the learning of the other bidders after

vetoing, we investigate the stability of bid-rigging. We conclude that collu-

sion in sealed low-bid auctions with uniform distribution and two bidders

and general open descending auctions is stable against competition after a

potential veto to take part in bid-rigging. The two leading bidding systems

are not immune to collusion.

We compare our findings with related results. In a second-price auc-

tion, some participation cost hinders collusion. If we reform the bidding

system to introduce some cost that influences not the production cost, but

the entry decision, the new bidding system of open descending auctions is

expected to reduce collusion. Collusion is easier in auctions than it is in

market competition. Competition authority should be more careful with

bid-rigging than price cartels. To detect and prevent collusions, procurers

reform bidding systems and competition authorities use some tools, e.g.,

leniency programs, etc. Our conclusion partially justifies these efforts to
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deter bid-riggings.

In future research we will investigate a bidding system in which a cartel

is not ratifiable. To formulate better competition policy, it is important to

investigate what conditions or institutional characteristics affect collusion.

A Proof of Lemma 3.2

Proof: The collusive payoff for a firm with cost c is given by

πm(c|r) = (r − c− T (c))(1− F (c))N−1 +

∫ c

c

T (x)(1− F (x))N−2f(x)dx

= (r − c)(1− F (c))N−1

− (N − 1)(1− F (c))−1

∫ r

c

(r − x)(1− F (x))N−1f(x)dx

+ (N − 1)

∫ c

c

(1− F (x))−2f(x)

∫ r

x

(r − y)(1− F (y))N−1dydx.

(11)

Note that by integral by parts,

∫ r

c

(r − x)(1− F (x))N−1f(x)dx =
1

N

(
(r − c)(1− F (c))N −

∫ r

c

(1− F (x))Ndx

)
.

(12)

Applying (12) and a kind of (12) to the second and the third terms in (11),

we get

πm(c|r) =
1

N
(r − c)(1− F (c))N−1 +

N − 1

N
(1− F (c))−1

∫ r

c

(1− F (x))Ndx

+
N − 1

N

∫ c

c

(r − x)(1− F (x))N−2f(x)dx

− N − 1

N

∫ c

c

(1− F (x))−2f(x)

∫ r

x

(r − y)(1− F (y))N−1dydx. (13)
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We obtain that by changing the order of integration,
∫ c

c

∫ r

x
(1− F (y))Ndy

(1− F (x))2
f(x)dx

=

∫ r

c

∫ c

c

(1− F (y))N

(1− F (x))2
f(x)dxdy +

∫ c

c

∫ y

c

(1− F (y))N

(1− F (x))2
f(x)dxdy

=

∫ r

c

(1− F (y))N((1− F (c))−1 − 1)dy +

∫ c

c

(1− F (y))N((1− F (y))−1 − 1)dy

=

∫ r

c

(1− F (x))N

1− F (c)
dx +

∫ c

c

(1− F (x))N−1dx−
∫ r

c

(1− F (x))Ndx.

Using this equations and a kind of (12), (13) is equal to

πm(c|r) =
1

N
(r − c)−

∫ c

c

(1− F (x))N−1dx +
N − 1

N

∫ r

c

(1− F (x))Ndx

=
1

N
(r − c) +

N − 1

N

∫ r

c

(1− F (x))Ndx−
∫ r

c

(1− F (x))N−1dx

+

∫ r

c

(1− F (x))N−1dx.

Especially,

πm(r|r) =
1

N
(r − c) +

N − 1

N

∫ r

c

(1− F (x))Ndx−
∫ r

c

(1− F (x))N−1dx.

Next, we transform this fixed term. We note that

((r − x)(1− F (x))N−1F (x))′ = −(1− F (x))N−1F (x) (14)

− (r − x)(N − 1)(1− F (x))N−2F (x)f(x) + (r − x)(1− F (x))N−1f(x).

Rearranging πm(r|r) gives

πm(r|r) =
1

N
(r − c)−

∫ r

c

(1− F (x))N−1F (x)dx− 1

N

∫ r

c

(1− F (x))Ndx

= −
∫ r

c

(1− F (x))N−1F (x)dx + [− 1

N
(r − x)(1− F (x))N ]rc −

1

N

∫ r

c

(1− F (x))Ndx

= −
∫ r

c

(1− F (x))N−1F (x)dx +

∫ r

c

(r − x)(1− F (x))N−1f(x)dx

= [−(r − x)(1− F (x))N−1F (x)]rc

−
∫ r

c

(1− F (x))N−1F (x)dx +

∫ r

c

(r − x)(1− F (x))N−1f(x)dx

=

∫ r

c

(r − x)(N − 1)(1− F (x))N−2F (x)f(x)dx.

The last equality uses (14).
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B Proof of Proposition 5.3

If for some Vv we obtain U1
v (c|r) < 0 for all c ∈ Vv, it is also true that

U1
v (l|r) < 0. In order to prove no credibility, we focus on the lowest cost

and prove U1
v (l|r) > 0 for any Vv and r. By (10), the competitive payoff for

the vetoer at the lowest cost is given by

π1∗
v (l|r) = (1− Fr(cr(p)))(p− cv(p)) =

(1 + h− 2l)2

4(1 + h− l)
.

The supposition of Proposition (5.2), the possible minimum reserve price

is r = (1 + h)/2.

By the above reasoning, substituting r into (8) yields the payoff differ-

ence:

U1
v (l|r) = πm(l|r)− π1∗

v (l|r)

=
h4 − (2 + l)h3 + 27lh2 + (−48l2 + 33l + 10)h + 24l3 − 48l2 + 5l + 7

48(1 + h− l)
.

Note that the denominator in the payoff difference is always positive for

feasible valuables. Let ζ(h; l) be the numerator and η(l) be limh→l ζ(h; l) =

l3− 15l2 +15l +7. We will prove that ζ(h; l) is increasing in h for l < h ≤ 1

and it is positive. Since η(0) = 7, η(1) = 8, and η′(l) = 3l2 − 30l + 15, we

easily calculate that η attains the local maximum 8(10
√

5− 21) ' 10.89 at

5− 2
√

5 ' 0.53. We obtain limh→l ζ(h; l) > 0 for any l.

The derivatives of ζ(h; l) are

dζ

dh
(h; l) = 4h3 − 3(2 + l)h2 + 54lh− 48l2 + 33l + 10,

d2ζ

dh2
(h; l) = 12h2 − 6(2 + l)h + 54l.

We easily see that limh→l
dζ
dh

(h; l) = l3 + 33l + 10 > 0. We denote the

discriminant of the quadratic equation d2ζ
dh2 (h; l) = 0 by d(l) = l2 − 68l + 4.

Let l∗ be the smaller solution to d(l) = 0. By simple calculation we obtain

l∗ = 34− 24
√

2 ' 0.059. First, we easily see that when the lower bound is

large enough for l > l∗ in the case of d(l) < 0, d2ζ
dh2 (h; l) is positive for all h.

Second, when l is lower than l∗, the first order derivative dζ
dh

(h; l) is

decreasing in h in the interval between (2 + l −
√

d(l))/4 and h∗(l) :=
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(2 + l +
√

d(l))/4. Therefore, in this case the first order derivative attains

a local minimum at h∗(l). Substituting h∗(l) in it yields:

dζ

dh
(h∗(l); l) =

1

8
(−l3 − 282l2 + 468l + 72− d(l)

3
2 ).

We easily see that dζ
dh

(h∗(0); 0) = 8 > 0. Since d(l) is decreasing in

l ≤ l∗, we obtain that −d(l)
3
2 is increasing in the region. Let θ(l) be

−l3−282l2+468l. Each solution of the equation θ′(l) = −3l2−564l+468 = 0

is −94 ± 4
√

562. We easily compute that the large one (' 0.83) is greater

than l∗ and the small one is negative. We obtain that θ′(l) > 0 and then

θ(l) ≥ 0 in the region. Therefore, we conclude dζ
dh

(h∗(l); l) > 0 in the region.

Finally, to bring two cases together we obtain that dζ
dh

(h; l) > 0 for any

feasible h. We prove that ζ(h; l) is positive for any h and l with 0 ≤ l <

h ≤ 1. There does not exist veto set such that U1
v (l|r) < 0 for any l and r.

C Proof of Proposition 6.1

Proof: The cut-off level h at which the vetoer is indifferent between the

collusion and the veto is determined by the following equation:

πm(h|r) = (r − h)(1− F (h))N−1. (15)

We first prove that there exists a cut-off cost h.

By Lemma 3.2, let us define

g(c) := πm(r|r) +

∫ r

c

(1− F (x))N−1dx− (r − c)(1− F (c))N−1.

Then,

g′(c) = −(1− F (c))N−1 + (r − c)(N − 1)(1− F (c))N−2f(c) + (1− F (c))N−1

= (r − c)(N − 1)(1− F (c))N−2f(c) > 0 for c < r.

By (4), g(c) = (r − c − T (c)) − (r − c) = −T (c) < 0. Furthermore,

g(r) = πm(r|r) > 0. Hence, there exists h such that g(h) = 0 for h < r.
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Let the vetoer v’s payoff after a veto be π2∗
v . We will show that π2∗

v (c) ≤
πm(c) for any c. As in (2), the equilibrium strategy gives

π2∗
v (c) =





0 if c > r,

(r − c)(1− F (h))N−1 if r ≥ c > h,

(r − c)(1− F (h))N−1

+
∫ h

c
(x− c)(N − 1)(1− F (x))N−2f(x)dx if h ≥ c.

We denote πm(c)− π2∗
v (c) by U2

v (c). We obtain that by (4) and (5),

U2
v (c) =





πm(r|r) if c > r,

πm(r|r) +
∫ r

c
(1− F (x))N−1dx− (r − c)(1− F (h))N−1 if r ≥ c > h,

πm(r|r) +
∫ r

c
(1− F (x))N−1dx− (r − c)(1− F (h))N−1

− ∫ h

c
(x− c)(N − 1)(1− F (x))N−1f(x)dx if h ≥ c.

First, we consider the case for r ≥ c > h:

U2
v (c) = πm(r|r) +

∫ r

c

(1− F (x))N−1dx− (r − c)(1− F (h))N−1.

Then,

U2′
v (c) =




−(1− F (c))N−1 + (1− F (h))N−1 > 0 if c > h

0 if c = h.

Since U2
v (h) = 0 by (15), we conclude that U2

v (c) ≥ 0 for r ≥ c ≥ h.

Second, we consider the case for c < h,

U ′
v(c) = −(1− F (c))N−1 + (1− F (h))N−1 +

∫ h

c

(N − 1)(1− F (x))N−2f(x)dx

= −(1− F (c))N−1 + (1− F (h))N−1 − [(1− F (c))N−1]hc = 0.

Since U2
v (h) = 0, we see that U2

v (c) = 0 for c ≤ h. The difference of payoffs

corresponds to the bold line in Figure 2. Even if the vetoer makes the

ratifiers stay out, he only gets his payoff equal to the bid-rigging payoff in

this case. Since the vetoer does not strictly gain by vetoing in any case,

the candidate veto set is not credible. Since the equilibrium p∗ is a weakly

26



dominant strategy, there is no credible belief and no strategy pertaining to

it.
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