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Abstract

This paper presents evidence on the pervasiveness of bid rigging in procurement

auctions by Japanese municipalities. Using bid data on public works projects from 56

municipalities in the Tohoku region, we examine persistence of rank order of bidders

in the initial auction and reauction that occurs when all bids fail to meet the secret

reserve price in the initial auction. We find that there is much unknown bid rigging.

We also develop a formal test for bid rigging that can be applied to sets of firms.

Our test results suggest that a lower bound of the share of ring firms is 23.5% of all

contracts.

Key words: Collusion, Procurement Auctions, Antitrust

JEL classification: D44, H57, K21, L12

1 Introduction

This paper presents descriptive evidence on the pervasiveness of bid rigging in public pro-

curement auctions by Japanese municipalities. Although bid rigging is illegal and violators
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face severe penalties including payment of fines, temporary exclusion from government

procurement auctions, and even criminal charges in some cases, many bidding rings may

exist without being detected by competition authorities. In this paper, we document evi-

dence of widespread collusion among municipal public works auctions held in recent years

(2010-2017) in the Tohoku region of Japan. Given that public works projects typically ac-

count for a substantial part of the economy (in Japan, it is about $200 billion per year, or

about 4% of its GDP (12 % in OECD countries1), successful detection and prosecution of

collusive activity can have economy-wide significance.

The detection method that we apply in this paper is based on Kawai and Nakabayashi

(2018), who study procurement auctions let by the Ministry of Land, Infrastructure and

Transport in Japan between 2003 and 2006. Kawai and Nakabayashi (2018) exploit bidding

data from reauctions to detect collusive behavior. Reauction is an auction that takes place

after an unsuccessful initial auction in which none of the bids meets the secret reserve price.

In this paper, we apply the method to a novel dataset that includes approximately 50,000

procurement auctions held by more than fifty municipalities in Japan.

In our dataset, we observe that reauctions occur in approximately 13% of lettings.

Given that bidding rings often predesignate a member to be the winner, bidding data from

reauctions offer an opportunity to detect collusion by examining whether or not there is per-

sistence in the identity of the lowest bidder across the initial auction and the reauction. In

particular, by focusing on auctions in which the lowest- and the second-lowest bidders bid

almost identically in the initial auction, it is possible to differentiate between persistence

attributable to simple cost differences and persistence attributable to the winner being pre-

arranged. Persistence in the identity of the lowest bidder, beyond what can be explained by

simple cost differences, suggests that the allocation of the project is predetermined through

a collusive agreement.

Using data collected from municipal public works auctions in Japan, we first document

high levels of persistence, of more than 90 percent, in the identity of the lowest bidder

among the municipal procurement auctions that we study. We also find that the percent-

age remains high even as we take the difference in the bids between the lowest and the

second-lowest bidders from the initial auction to zero. This is in contrast to the fact that

the persistence in trailing bidders is quite low between the initial auction and the reauction,

e.g., the probability that the first-round second lowest bidder outbids the initial-round third

lowest bidder in the reauction is about 50 percent of the time.

1OECD (2017), “Size of public procurement”, inGovernment at a Glance 2017, OECD Publishing, Paris.
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We then examine more closely how the lowest and the second-lowest bidders from the

initial auction bid in the reauction. We document anomalous bidding patterns in the reauc-

tion, in which the lowest bidder from the initial auction is seemingly able to consistently

outbid the second-lowest bidder by a small margin, while being able to avoid being outbid

by the second-lowest bidder by a small margin. In particular, the distribution of the bid

difference in the reauction between the two lowest bidders from the initial auction has a

sharp kink at zero. We find no such kink for the distribution of the bid difference in the

reauction between any two trailing bidders from the initial auction. Our findings imply that

the bidders know how each other will bid in the reauction, and moreover, the second-lowest

bidder from the initial auction (as well as all of the other bidders) purposely bid higher than

the lowest bidder to let the designated firm win the auction. These findings are suggestive

of communication among auction participants.

We finally construct a formal test for pervasiveness of collusion in the data. We focus

on three municipalities that do not reveal the lowest bid in each round. The null of compe-

tition is that the rank order of the first round does not affect the second-round bidding. In

particular, the second-round bidding of bidderi should not depend on whether bidderj’s

(j ̸= i) first-round bid is marginally above or below its first-round bid if the auctioneer does

not reveal the lowest bid in each round. Based on the observation, we test for collusion in

the second round by a regression discontinuity estimation, measuring the marginal effect

of the rank order in the first round on the second-round bidding.

In practice, we apply the test to sets of bidders and compute the share of the bidders by

taking the number of contract awards divided by the lettings. Then, we estimate a lower

bound of the share of bidders whose second-round bidding rejects the null of competition.

In the baseline estimation, we find that a lower bound is 23.5%.2

The remainder of the paper is as follows. Section 2 reviews related literature. Section

3 explains the institutional detail of procurement auctions in our data. Section 4 describes

the data. Section 5 provides the main analysis. Section 6 discusses the validity of our main

analysis. Section 7 tests for pervasiveness of collusion. Section 8 concludes.

2The number of auctions whose winner is inconsistent with the null of competition is 630, and the total
number of lettings in our sub-sample is 2,679. Note that the number of firms that won in the 630 collusive
auctions is 68.
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2 Literature Review

Our paper is related to empirical studies on cartels. There are two strands of empirical stud-

ies on collusion, depending on whether the test for collusion is based on known episodes

of cartels or not.

The first group includes Porter and Zona (1993; 1999), Asker (2010), and Ishii (2014).

Porter and Zona (1993; 1999) test for collusion by using data on DOT in New York state

and school milk procurement auctions in Ohio. They test whether firms bid according to

their costs by focusing on bid ranking (1993) and bid amounts (1999). Asker (2010) an-

alyzes bid rigging in collective stamp auctions. He studies a novel dataset on “knockout”

auctions, operated by the stamp dealers, as well as the data on stamp auctions that were

targeted by the knockout auctions. By establishing a collusion equilibrium, he estimates

damages, inefficiency, and ring members’ benefits from collusion. Ishii (2014) tests for

collusion, focusing on the “roundness level” of bids. Using data on auctions for construc-

tion works in Okinawa Prefectural Government, she finds that more zeros appear at the

end of both winning and trailing bids when the auction is collusive than when the auc-

tion is competitive. The second group includes Bajari and Ye (2003), Ishii (2009), Conley

and Decarolis (2016), and Kawai and Nakabayashi (2018). Bajari and Ye (2003) test for

collusion by first deriving two conditions competitive bids must satisfy,i) conditional in-

dependence of bids andii) exchangeability. They then test the conditions by using bid data

on seal coat contracts. Ishii (2009) tests for bid rotation among land compensation con-

sultants in Okinawa prefecture in Japan. By using a conditional logit model, she finds that

observed bid patterns are not from competition but from “the exchange of favor” among

ring members, a typical scheme of rotation cartels.

Conley and Decarolis (2016) study the average bid auctions (ABAs). In this auction,

the winner is the bidder whose bid is closest to an average bid. By using bid data for

road construction works procured by municipalities in Italy, they document evidence of

collusion.

Kawai and Nakabayashi (2018) detect large-scale collusion in procurement auctions

by the national government of Japan. Their analysis focuses on reauctions and documents

evidence of collusion by using an idea similar to the regression discontinuity design. While

our paper follows Kawai and Nakabayashi (2018), the following two features are new. First,

we document evidence of widespread collusion, using a novel dataset of municipal public-

works auctions held in recent years. Second, we propose a formal test for collusion with
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which we identify a lower bound of the contract share of collusive firms. In this test, we

focus on a set of municipalities that do not reveal the lowest bid of the initial auction when

a reauction occurs. Given that bidders areex antesymmetric in both initial auction and

reauction in terms of information, the rank order of the initial auction should not affect

rebidding unless bidders communicate with each other.

Our paper is also related to theoretical analyses on cartels. Awaya and Krishna (2017)

model a repeated price-competition game in which players not only set prices but also

play a cheap-talk game in each stage in terms of sales. Their results suggest that collusion

can achieve higher payoffs if communication is possible and that communication among

collusion members may be detrimental to social welfare. By constructing a model of an

infinitely-repeated first-price auction, Chassang and Ortner (2015) investigate cartel sta-

bility. They show that a price constraint in the auction imposed by procurement buyers

weakens cartel enforcement. Moreover, they test the theoretical prediction on procurement

data from municipalities in Japan and obtain empirical results consistent with the predic-

tion.

3 Institution

The format of the procurement auctions in the sample is first-price sealed bidding: the

lowest bidder wins the project, subject to meeting the reserve price set by the auctioneer.

Some municipalities use public reserve prices while others use secret reserve prices. For

auctions with secret reserve prices, there is typically rebidding for the same project if all

bids fail to meet the secret reserve price. In most cases, rebidding takes place within the

same day, with the same set of bidders. If no bid meets the reserve price after several

rounds of rebidding, the municipality may enter into a bilateral negotiation with one of the

bidders.

For auctions with secret reserve prices, it is quite common for the auctioneer to an-

nounce the lowest bid to all of the bidders, as well as whether or not that bid meets the

reserve price. None of the other bids is announced at this point, however. Because the

distribution of the secret reserve price remains the same between the initial bidding and all

subsequent rounds of rebidding, the bidders can update their beliefs about the reserve price

based on the lowest bid from the previous round. All of the bids, the secret reserve price,

and the identity of the bidders are made public after the auction concludes.

5



4 Data

We use bidding data for public construction projects let by municipalities in the Tohoku

region of Japan. The data include all the bids in the initial auction as well as in subsequent

rebidding. We also have information on the reserve price, the auction date, and bidder

identities.

Our sample includes a total of 74,458 procurement auctions held by 56 municipalities

between the years 2010 and 2017.3 For some municipalities, the sample starts as early

as 2010, while for others, the sample includes only the last few years. The construction

projects that are part of our data comprise an important part of the economy of this region.

For example, for the 2013 fiscal year, the data include about 12,000 auctions worth about

430 billion yen (or about 4.3 billion USD).Given that the total GDP of the 56 municipalities

combined is 11.0 trillion yen, the public works projects in our data account for about 3.9

percent of the region’s GDP.

Table 1 reports the summary statistics of our sample. The average reserve price is about

27 million yen, or about 270,000 dollars. The average winning bid is about 25 million yen.

The average of the winning bid divided by the reserve price is 0.918. A large fraction of

the auctions concludes in the first round. Approximately 13% of auctions proceed to the

second round, and 4% of auctions proceed to the third round. The data includes all the bids

in the initial auction as well as in subsequent rounds of rebidding. The data also includes

reserve prices, dates, auction formats, and firm identities.

5 Analysis

Persistence in the Identity of the Lowest Bidder We begin by investigating whether

persistence in the identity of the lowest bidder between the initial and subsequent rounds

of bidding is beyond what competitive bidding would imply. When bidders form a bidding

ring, the ring typically designates one of the bidders as the winner in advance. The non-

designated members of the bidding ring bid less competitively than the designated bidder

to make sure that the project is allocated as planned. Given that the secret reserve price is

uncertain for ring members, the designated bidder can be expected to submit the lowest bid

in each round of bidding. Hence, collusion may generate high persistence in the identity of

3We obtained data from a total of 122 municipalities. However, given that our detection method exploits
rebidding, we use only data from the subset of municipalities that use rebidding.
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Concluding (R)eserve (W)inbid (W)/(R) Lowest bid/Reserve # N
Round Yen M. Yen M. Round 1 Round 2 Round 3 Bidders

1 27.570 25.291 0.908 0.908 - - 8.725 42,333
(115.929) (107.825) (0.093) (0.093) (5.083) 86.75%

2 22.529 22.272 0.979 1.036 0.979 - 8.555 4,408
(101.293) (100.191) (0.026) (0.055) (0.026) (5.746) 9.03%

3 22.412 22.155 0.978 1.089 1.049 0.978 8.584 2,060
(79.770) (79.380) (0.028) (0.090) (0.212) (0.028) (5.861) 4.22%

All 26.897 24.886 0.918 0.927 1.002 0.978 8.704 48,801
(113.386) (106.107) (0.090) (0.103) (0.126) (0.028) (5.182) 100%

Table 1: Sample Statistics. The first row presents the sample in which the auction ends in
the first round. The second or third row corresponds to the sample in which the auction pro-
ceeds to the second or third round. The first and second columns present the averages of the
reserve price and the winning bid. The third column shows the fraction of the winning bid
over the reserve price. The fourth through the sixth columns present the average fractions
of the lowest bid over the reserve price in the initial auction, the first round of rebidding,
and the second-round of rebidding. The number of bidders is shown in the seventh column.
The last column presents the sample size.

the lowest bidder across multiple rounds of bidding.

The panels in Figure 1 illustrate the probability that the rank order of a pair of bidders

is preserved across rounds as a function of the difference of their first-round bids. More

precisely, leti(k) denote the identity of thek-th lowest bidder in the initial auction. Let

∆kk+1 denote the difference between the first-round bids ofi(k) andi(k + 1) normalized

by the secret reserve price:4

∆kk+1 ≡
[First round bid ofi(k + 1)] − [First round bid ofi(k)]

Reserve price
.

The vertical axis corresponds to the fraction of lettings in which the rank order of the two

bidders is the same between the first and the second rounds. The horizontal axis describes

∆k,k+1 for k = {1, 2, 3, 4}. The top left panel illustrates that the probability ofi(1)’s bid

being lower thani(2)’s bid in the second round is close to 100% for most values of∆12,

implying that reversals in ranking rarely occur across rounds. The figure also shows that

even as∆12 approaches0, the probability thati(1) outbidsi(2) in the second round remains

very high. Note that if two bidders bid the same amount in the first round, the bidders are
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considered to be symmetric, i.e., their costs (and risk attitudes etc.) should be the same on

average. Therefore, which bidder bids lower in the subsequent round should be as good as

random if the lowest bid is not revealed. As we discuss later, we should expect thati(2)

outbidsi(1) more than 50% of the time, but not less if the lowest bid is revealed at the end

of the first round.5 Hence, the high frequency thati(1) outbidsi(2) in the top-left panel is

unlikely to be driven by simple cost differences.

The top right panel of the figure plots the probability thati(2) outbidsi(3) in the reauc-

tion, as a function of∆23. For i(2) andi(3), the figure shows that the probability thati(2)

outbidsi(3) in the second round becomes close to51% when∆23 approaches zero. The

bottom two panels illustrate analogous probabilities fori(3) andi(4), and fori(5) andi(6).

The bidding pattern illustrated in Figure 1 suggests that the persistence in the identity

of the lowest bidder is beyond what competitive bidding would generate. These bidding

patterns are consistent with a collusive bidding scheme in which the designated winner bids

lowest in each round, and all the other bidders submit phantom bids that are not necessarily

correlated with underlying costs.

5We also find that the probability thati(1) outbidsi(2) is close to 100% for auctions in which the lowest
bid is not announced. See Section 5 for details.
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Figure 1: Persistence Rank Order across Rounds. The top left panel plots the probability
that the rank order betweeni(1) and i(2) is preserved from the initial auction (Round 1
auction) to the next round of rebidding (Round 2 auction) as a function of the difference
of their first-round bids denoted by∆12. The vertical axis corresponds to the fraction
of lettings in which the rank order of the two bidders is the same between the Round 1
auction and the Round 2 auction as a function of the difference ini(2) and i(3)’s first-
round bids. The top right panel plots the probability that the rank order betweeni(2) and
i(3) is preserved from the Round 1 auction to the Round 2 auction. The bottom two panels
plot the probabilities that the rank orders betweeni(3) andi(4) (left) and betweeni(4) and
i(5) (right) are preserved from the Round 1 auction to the Round 2 as function of their
first-round bid differences, respectively.
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Figure 2: Difference in the Second-Round Bids ofi(1) and i(2) (Left Panels) and the
Difference in the Second-Round Bids ofi(2) andi(3) (Right Panels). The first row is the
histogram for the set of auctions that reach the second round; andi(1) andi(2) (or i(2) and
i(3)) submit valid bids in that round. The second to fourth rows plot the same histogram but
only for auctions in which the differences in the first-round bids are relatively small. Note
that the sample sizes are different between the top left and the top right panels because in
some auctions,i(1) or i(3) does not bid in the second round. With the same reason, the
sameple sizes are different between the bottom left and right panels.
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In order to illustrate how bidders maintain persistence in the identity of the lowest

bidder across rounds, Figure 2 plots∆2
12 and∆2

23, where∆2
kk+1 denotes the (normalized)

difference between thesecond-round bids ofi(k) andi(k + 1):

∆2
kk+1 =

[Second round bid ofi(k + 1)] − [Second round bid ofi(k)]
Reserve price

.

The top two panels of Figure 2 plot the histograms of∆2
12 and∆2

23 for all auctions that

reach the second round. While the panels confirm what we have already documented in

Figure 1 – on the left panels, much of the mass lies to the right of zero, reflecting the fact

that i(1) outbidsi(2) in the reauction with very high probability, while the densities are

almost symmetric around zero on the right panels – these highlight a notable aspect of

bidding patterns in reauctions. That is, focusing on the density of∆2
12 in the top left panel

around zero on the horizontal axis, there are many auctions in which∆2
12 lies slightly to the

right of zero, but there are almost no auctions in which∆2
12 lies slightly to the left of zero.

This implies thati(2) is consistently outbid byi(1) by a narrow margin but thati(2) rarely

outbidsi(1) by a narrow margin.

The left panels of the second and third rows of Figure 2 plot∆2
12 conditional on auctions

in which the difference in the first-round bids ofi(1) andi(2) is less than 5% and 1% of

the reserve price, respectively. Similarly, the right panels of the second and third rows plot

∆2
23 conditional on auctions in which the difference in the first-round bids ofi(2) andi(3)

is less than 5% and 1%, respectively. The fourth panel plots∆2
12 and∆2

23 conditional on

∆13 being less than 1%, i.e., auctions in which all three lowest bids in the initial auction

fall within 1% of the reserve price. We find that the shapes of the distributions of∆2
12 and

∆2
23 remain relatively similar across all four rows.

The bidding pattern illustrated in the left panels of Figure 2 suggests that persistence in

the identity of the lowest bidder is maintained with some form of communication between

the bidders. When we look at the panels in the right column of Figure 2, we see that∆2
23

has some amount of variance for all rows. This suggests that there are some idiosyncrasies

even among bidders who bid approximately the same amount in the initial auction, such as

beliefs over the secret reserve price, inducing variance in the second-round bidding. Hence,

from the perspective ofi(2), consistently losing toi(1) by a narrow margin without winning

by a narrow margin seems difficult to achieve without knowing howi(1) is going to bid.

The particular shape of the distribution of∆2
12 around zero suggests thati(2) is deliberately

losing to the designated winner.
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6 Validation of the Main Analysis

In this section, we provide further evidence that the bidding patterns documented in the

previous section are indicative of collusion. We first studyi(2) who outbidsi(1) in the

reauction. Wheni(1) loses toi(2) in the reauction, it is likely that there is no predetermined

winner for the auction. Hence, the bidders who participate in these auctions are likely to

be competitive. We provide evidence of this.

We then study auctions in municipalities that do not announce the lowest bid from the

initial auction before rebidding takes place. We find very similar bidding patterns for these

auctions. This analysis rules out the possibility that the patterns we documented in the

previous section are explained by the asymmetry created betweeni(1) and all other bidders

by the announcement of the lowest bid.

Firms that outbid i(1) in the reauction There are only about 240 auctions in which

i(2) outbidsi(1) in the second round. We now explore whether there are any differences

between ani(2) firm that outbidsi(1) in the reauction and ani(2) firm that is outbid by

i(1) in the reauction. We have argued above that the distribution of∆2
12 has much of the

mass to the right of zero under collusion, but that this is not necessarily the case under

competition. Hence,i(2) firms who outbidi(1) in the reauction are likely to be bidding

more competitively thani(2) who are outbid byi(1).

To test this idea, we plot the average winning bid of auctions in whichi(2) firms partic-

ipate as a function of∆2
12 in Figure 3. More specifically, for each auction that reaches the

second round, we identify ani(2) firm in the auction and compute the average winning bid

of the auctions in which the firm participates and that include one that ends in the initial

round.

For robustness, we consider two ways of computing the average winning bid: first by

taking the average over the winning bid of the five auctions preceding (but not including)

the auction in question; and second, by taking the average over the five subsequent auctions,

excluding the relevant auction. Specifically, letbbefore
i(2),t andbafter

i(2),t denote the average winning

bid of five auctions preceding and succeeding auctiont and in which thei(2) firm in auction

t bids. Letbwin
τ denote the winning bid in auctionτ . Then, for each auctiont, we have

bbefore
i(2),t =

1

5

τ=t−1∑
τ=t−5

bwin
τ , bafter

i(2),t =
1

5

τ=t+5∑
τ=t+1

bwin
τ .
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The left and right panels of Figure 3 are bin plots ofbbefore
i(2),t andbafter

i(2),t. The horizontal axis

is ∆2
12 and the vertical axis is the winning bid normalized by the reserve price. Therefore,

plots to the left of zero correspond to the average winning bid ofi(2) firms that outbidi(1)

in some auctions, and plots to the right of zero correspond to the average winning bid of

i(2) firms that are outbid byi(1).

Both panels of Figure 3 show that the average winning bid ofi(2) that marginally

outbidi(1) is lower than the average winning bid ofi(2) that is marginally outbid byi(1),

by about 5%.6 These results suggest that bidders that outbidi(1) in the second round are

quite different from those that are outbid byi(2). There seems to be more competition

among the former set of bidders than the latter.
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Winbid / Reserve

Figure 3: Bin Plots of Average Winning Bid in Auctions for whichi(2) Firms Bid. For
each auction that reaches the second round, we identifyi(2) and compute the winning bid
of auctions in which the firm participates. We first compute the winning bid by taking
the average over the five auctions preceding (but not including) the auction in question.
Second, we compute the average over the five subsequent auctions. The left panel plots the
average winning bid of the five preceding auctions against∆2

12. The right panel plots the
average of the five subsequent auctions against∆2

12. The size of the bin is 0.5%.

6We find that the differences at zero are 4.97% for the left panel and 5.35% for the right panel, respectively,
and that both are statistically significant at the 5% significance level.
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Differences in Information Betweeni(1) and i(2) For most auctions in our sample,

the auctioneer announces the lowest bid among the bidders to all participants at the end of

each round of bidding. This creates a possible asymmetry betweeni(1) andi(2) even if

i(1) andi(2) are similar in terms of costs. To see this, suppose thati(1) bidsZ andi(2)

bidsZ + ε, whereε > 0 is a small number. If the lowest bid is announced to everyone,

i(1) learns thatZ is the lowest bid, buti(1) does not gain any knowledge about how any of

the other bidders bid. On the other hand,i(2) learns thatZ is the lowest bid, and that one

bidder besides itself bidsZ. This asymmetry in information exists betweeni(1) andi(2)

but not betweeni(2) andi(3). We now discuss whether or not this asymmetry can account

for the persistence in the identity of the lowest bidder even in the absence of collusion.

First, note that when the differences ini(1) andi(2)’s bids in the initial round are small,

the announcement of the lowest bid creates information asymmetry betweeni(1) andi(2).

That is, whilei(1) does not know how close the second lowest bid is,i(2) knows that the

bids are almost exactly tied. Hence,i(2) should be able to outbidi(1) by biddingslightly

more aggressivelythan the bidding strategy employed byi(1). As long as we condition

on auctions in which the first-round bids ofi(1) andi(2) are sufficiently close, we should

expecti(2) to outbid i(1) more than 50% of the time, not less, under competition. This

is certainly not the case in the data, suggesting that information asymmetry is unlikely to

explain the persistence in the identity of the lowest bidder.

In order to further explore the importance of information asymmetry, we next study the

persistence in the identity of the lowest bidder and the distributions of∆2
12 and∆2

23 for the

set of municipalities that do not announce the lowest bid after each round.7 When none of

the bids are announced, there are no differences in the information available toi(1), i(2),

andi(3) for auctions in which the first-round bids are close. Figure 4 and Figure 5 replicate

Figure 1 and Figure 2 for these municipalities. We find that the probability of ranking

reversals and the shapes of the distributions of∆2
12 and∆2

23 for the restricted sample look

very similar to those in Figure 1 and 2. These findings imply that the bidding patterns

documented in the previous section are unlikely to be explained by the announcement of

the lowest bid.

7Municipalities that do not disclose the lowest bid in each round of bidding are cities of Kitakami (all
years), Tamura (Fiscal Years 2010-2013), and Hanamaki (until Fiscal Year 2010, and 2011).
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Figure 4: Persistence of Rank Order across Rounds for the Three Municipalities. The figure
replicates Figure 1 for the three municipalities in which none of the bids are announced.
The top left panel plots the probability that the rank order betweeni(1) andi(2) is preserved
from the first to the second round as a function of the difference of their first-round bids.
The vertical axis corresponds to the fraction of lettings in which the rank order of the two
bidders is the same between the first and second rounds. The horizontal axis describes
∆kk+1 for k = {1, 2, 3, 4}. The top right panel plots the probability that the rank order
betweeni(2) and i(3) is preserved from the first to the second round. The bottom two
panels plot the probabilities that the rank orders betweeni(3) andi(4) (left) and between
i(4) andi(5) (right) are preserved from the first to the second round, respectively.
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Figure 5: Difference in the Second-Round Bids for the Three Municipalities. The figure
plots∆2

12 (left column) and∆2
23 (right column) for the three municipalities in which none

of the bids are announced. The first row is the histogram for the set of auctions that reach
the second stage. The second to fourth rows plot the same histogram but only for auctions
in which the differences in the first-round bids are relatively small. Note that the sample
sizes are different between the top left and top right panels, because in some auctionsi(1)
or i(3) does not bid in the second round. This is similar for the bottom left and right panels.
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7 How Pervasive is Collusion?

We now discuss how to draw inferences on the extent to which auction participants engage

in bid rigging in our data. One informal approach is to draw the distribution of∆2
12 and∆2

23

conditional on auction characteristics such as municipality and year in which the auction

takes place, project type, etc. One can obtain a sense of how widespread collusion is by

exploring whether or not the distributions of∆2
12 and∆2

23 is different for a large set of

auction characteristics or only for a specific set of auction characteristics. In this section,

we consider a slightly more formal approach.

In this section, we focus on municipalities that do not reveal the lowest bid after each

round of bidding. For these auctions, whether other bids are below or above its own bid

is not in the information set of the firm when it rebids. Hence, the second round bidding

strategy of bidderi should not depend on whether bidderj’s (i ̸= j) first-round bid is above

or below its first round bid under the null of competition, i.e.,

E[b2i |Ji, {b1i < b1j}] = E[b2i |Ji, {b1i > b1j}], (1)

wherebri is bidderi’s bid in roundr andJi is the information set of bidderi when it bids in

the second round. In what follows, we construct a test for collusive bidding based on this

observation.

To define our test statistic, we introduce some notation. LetI0 denote the set of all

firms observed in our data,Icp denote the set of competitive firms that never engage in bid

rigging, andIcl = I0\Icp denote the set of collusive firms. LetW (I) (I ⊆ I0) denote the

set of auctions in which the winner is a firm inI. Moreover, let|W (I)| denote the share of

the auctions whose winner is a firm inI, i.e.,

|W (I)| = Number of auctions inW (I)
Number of all auctions

.

Then, the null hypothesis that we would like to test is as follows.

H0 : |W (Icp)| ≥ α ∈ [0, 1]

Consider the set of bidders with the share of auctions greater thanα. If we setα = 1, then

the set of bidders with|W (I)| ≥ α is I0 only. UnderH0, there existsI ⊆ I0 such that

|W (I)| ≥ α and (1) holds for alli ∈ I. Let I1 · · · IS(α) be the enumeration of all the
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subsets of bidders such that|W (Is)| ≥ α for all s ∈ {1, . . . , S(α)}, and letHs denote the

hypothesis that (1) holds for alli ∈ Is. The null hypothesisH0 is equivalent to the null

hypothesis that at least one among{H1, · · · , HS(α)} is true.

To test forHs, consider a regression ofb2i on a dummy of whether or notb2i is higher or

lower than its most competitive rival. Lett denote the index of lettings for which at least

one bidder inIs bids. Letc(i) (i ∈ Is) denotei’s most competitive rival bidder from the

first round, i.e.,c(i) is i(2) or i(1), depending on whether or noti is i(1). Consider the

following regression of{b2it}i∈Is:

b2it = g(b1it) + β+1{b1it−b1
c(i)t

∈(0,δ)} + β−1{b1it−b1
c(i)t

∈(−δ, 0)} +Dt + εit. (2)

The left-hand side of the regression is bidderi’s second-round bid in auctiont. g(b1it) is a

fourth order polynomial of bidderi’s first-round bid andDt is a month-year fixed effect.

The second and third terms capture the effect of bidderc(i)’s first-round bid onb2it. 1{}

is an indicator function, andδ is a positive scalar. Because more than one bidder inIs

may participate in auctiont, we allow for the errors to be correlated within an auction.

The object of interest isβ+ − β−; it measures the effect of whether the rank of bidderi is

marginally the lowest or not in the first round. IfJi does not include whether other bids

are below or above its own bid,i’s second-round bidding strategy should not depend on the

rank order in the first round. Hence,β+ − β− = 0 under the null.

Let ps denote thep-value forβ+ − β− = 0 from regression (2), conditioning on firms

in Is. Let p̄(α) = max{p1, . . . , pS(α)}. We rejectH0 if p̄(α) is less than 0.05. This

formulation is a standard multiple hypothesis test by enumerating all the set of bidders

whose combined share exceedsα.8

Before we present our results, we discuss the limitations of the test. Because we do not

have much information on auction characteristics, it is difficult to condition fully on the in-

formation set of the bidders,Ji. To the extent that there are omitted auction characteristics

that are correlated withb1it or b1c(i)t, our estimates ofβ+ andβ− may be biased.

To address this issue, we use a fairly smallδ in the estimation. By choosing a smallδ,

the coefficientsβ+ andβ− are identified from a relatively homogeneous sample of auctions.

As δ → 0, the estimate ofβ+ − β− becomes a regression discontinuity estimate. In

8The test statistic is conservative, because we do not rejectH0 until we rejectβ+ − β− = 0 for all
s ∈ {1, . . . , S(α)}.
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particular, we have

lim
δ→0

E[b2i |b1i − b1c(i) ∈ (0,δ)]− E[b2i |b1i − b1c(i) ∈ (−δ, 0)] = 0

under the null hypothesis.

We obtain an upper bound on the share of competitive firms by considering the con-

straint optimization

Maximizeα s.t. p̄(α) ≥ 0.05.

Letα∗ denote the solution to this problem. Then,1−α∗ can be interpreted as a lower bound

on the share of auctions in which the winner is a firm whose rebidding behavior rejects the

competitive null. Hence, the solution to this problem gives us a conservative bound on the

set of auctions that are rigged by colluding bidders.

To solve for the constraint optimization problem, we first find a set of 10 firms whose

share of lettings is very high and whose rebid patterns do not reject the competitive null.

We then apply the greedy algorithm to findα∗, taking these 10 firms as the initial condition.

We obtainps(·) for eachs ∈ {1, . . . , S(α)} by implementing anF test forβ̂+ = β̂−, where

β̂+ andβ̂− are regression coefficients obtained from (2). For robustness, we use a set ofδ,

i.e.,δ ∈ {0.03, 0.04, 0.05}.

We find that1 − α∗ is around 20%. For instance,1 − α∗ is 23.5% atδ = 0.04, i.e.,

a lower bound on the number of collusive auctions is 630 and the number of lettings in

our sample is 2679. We also find that the number of firms that won in the 630 collusive

auctions is 68. Ifδ = 0.03, 1− α∗ is 18.6%. Also, ifδ = 0.05, 1− α∗ is 28.2%.

Recall that the winning bid in the auction in which a collusive firm bids is higher by

approximately 5% than the winning bid in the auction in which a competitive firm bids, c.f.

see footnote 6. If the share of the collusive firms is 23.5% for all of the 56 municipalities

in our sample, the award amount of collusive firms is at least 2.85 billion dollars during the

sample period. Hence, taxpayers lose at least 143 million dollars through higher contract

prices.

8 Concluding Remark

In this paper, we explore the extent to which collusion is widespread in the public procure-

ment auctions of Japanese municipalities. We find that the persistence in the identity of the

lowest bidder is very high across rounds, which is inconsistent with competitive bidding.
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We also find that the initial-round lowest bidder quite often outbids the initial-round second

lowest bidder in the reauction by a small margin, even for lettings in which their bids in the

initial round are very close. This finding suggests that the ring members communicate how

they will bid in the subsequent round. We then construct a statistical test for pervasiveness

of collusion. Our test results indicate that at least about 20% of government contracts are

awarded to firms whose bidding behavior is inconsistent with competition.
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