The Decline of Labor Share and New Technology Diffusion: Implications for Markups and Monopsony Power

Shoki Kusaka Yale University Tetsuji Okazaki University of Tokyo Ken Onishi Hitotsubashi University Naoki Wakamori Hitotsubashi University

July 7, 2023 Japan Fair Trade Commission

The Decline of Labor Share

- The Decline of Labor Share
 - Factor-biased technological changes and automation
 - Increased market power by large firms in product and labor markets
- Evolution of market power has attracted huge attention recently.
 - Findings are mixed in the literature.
 - Production Approach
 - De Loecker, Eeckhout, and Unger (2020)
 - IO-type Demand Approach Grieco, Murry and Yurukoglu (2022)
 - Labor market power

Azar, Berry, Marinescu (2022), Yeh, Macaluso, and Hershbein (2022)

- "Technology" plays a key role, but not directly observed!

Our Approach

- Looking at an industry where plant-level technology is observed
 - The Japanese cement industry and its new production technology from 1970-2010
- Examining the effects of technological change on labor share
- Examining the other explanations for the decline of the labor share

Main Findings

- New production technology is the main driver for the decline of the labor share
- Information on technology at plant is important to reject other explanations
 - increasing markups
 - declining worker power
- Without technology information, we would obtain the increasing trend of aggregate markups and labor market power.

Literature and our contribution

1. The decline of the Labor share

- Grossman and Oberfield(2022), Karabarbounis and Neiman(2014), Kehrig and Vincent(2021)
- Acemoglu and Restrepo(2020), Autor et al.(2020), Humlum(2021)

Industry-level study, beyond the robot/automation/ICT era

2. The evolution of market power

- Production approach: De Loecker et al. (2020), Syverson(2019), Jaumandreu(2022), Yeh et al. (2022)
- Demand approach: Grieco et al. (2021), Dopper et al. (2022), Miller et al. (2022), Azar et al. (2021)

Focus on a specific industry and technological change with "production approach"

3. Factor-biased technological change in production function estimation

- Doraszelski and Jaumandreu (2018), Raval (2022), Zhang (2019), Demirer (2022)
- van Biesebroeck (2003), Collard-Wexler and De Loecker (2015) Rubens (2022)

Directly observe the differences in production technology at plants

Roadmap

- 1. Industry details and data
- 2. Descriptive and reduced-form analysis
- 3. Production function estimation
- 4. Implications for markups and monopsony power

Background (1/2): Features of Cement

- Cement is a homogeneous product
- Cement requires only four inputs and production process is simple

Background (2/2): Evolution of Kilns

- Historical evolution of kilns:
 - Very old technologies: Wet kilns and Dry kilns
 - Old technologies: SP (Suspension Preheater) kilns, 1960s-
 - New technology: NSP (New SP) kilns with a precalciner, 1973-
- Differences between SP Kilns and NSP Kilns

Data Sources

	Cement Yearbook	Census of Manufacture	
Freq.	Annual	Annual	
Unit	Plant	Plant	
Period	1970-2010	1980-2010*	
Price (in JPY)	Local market price (\bar{p}_{mt})	-	
Production (in ton)	Clinker (q_{it})	_	
Revenue (in JPY)	-	Total revenue ($(pq)_{it}$)	
Wage (in JPY)	Pref-ind. avg. wage ($ar{w}_{mt}$)	Total wages $((wL)_{it})$	
Labor (in Person)	Num of workers (I_{it})	Num of workers**	
Assets (in JPY)	-	Tangible Assets	
Capacity (in ton/month)	Monthly capacity	_	
Material Input (in JPY)	-	Material input (<i>m_{it}</i>)	
Kilns	Num of kilns & technology	-	

The Decline of Labor Share and New Technology

Adoption Process of New Technology

Figure: # of kilns in the industry

Industry Trend

- The industry-level labor share declined, especially in the 1970s.

Figure: Aggregate Labor Share

Industry Trend by Technology

- Labor shares are constant within the same technology plants

Evidence from Event Study: Motivation

- What happens at the plant level?
 - Labor share
 - wage, # of workers, output, capital-labor ratio
- An event study design to investigate what happens when plants adopt NSP kilns.
- The method proposed by Callaway and Sant'Anna (2021) to deal with
 - multiple adoption timings
 - heterogeneous effects

Evidence from Event Study: Our Approach

- We adopt the method proposed in Callaway and Sant'Anna (2021).
- ATT for cohort *t* in τ years from the "treatment":

$$\mathsf{ATT}(t,\tau) = \mathsf{E}\left[\left(\frac{G_{it}}{\mathsf{E}[G_{it}]} - \frac{\frac{p_t(X_{i,t-1})C_{it}}{1 - p_t(X_{i,t-1})}}{\mathsf{E}\left[\frac{p_t(X_{i,t-1})C_{it}}{1 - p_t(X_{i,t-1})}\right]}\right)(y_{i,t+\tau} - y_{i,t-1})\right],\tag{1}$$

- $\tau_{min} = -3, \tau_{max} = 10$
- G_{it} : an indicator variable for treatment cohort t
- C_{it} : an indicator variable for control group
- control group is never treated individuals and not yet treated individuals
- $p_t(X_{i,t-1})$: propensity of treatment.

Evidence from Event Study: Our Approach

- We estimate $ATT(t, \tau)$ by its sample analog
- We define ATT τ years from the treatment as the weighted average of ATT(t, τ) as:

$$\mathsf{ATT}(\tau) = \sum_{t} w_t \mathsf{ATT}(t, \tau),$$

Results(1/3): Labor Share

- Evolution of the labor share (relative to the timing of new technology adoption)

Results(2/3): # of Employees and wage growth

- Evolution of the employment (left) and wage growth (right)

Results(3/3): Output value and production capacity

- Evolution of the output value (left) and production capacity (right)

From reduced-form to production function

- Reduced-form analysis finds that after the adoption of NSP kilns
 - Labor share gradually decreased
 - The number of workers gradually decreased
 - Wage growth did not change
 - Output value increased and a jump in production capacity (capital)
- Difficult to rationalize the patterns if the new technology is just an increase in TFP

$$Y_{it} = \mathbf{A}_{it} \mathbf{K}_{it}^{\beta_k} L_{it}^{\beta_l}$$

- Different shape of production functions for different technology

Production Technology: Estimation Results

- Production Function (Cobb-Douglas) Estimates via ACF (2015):

(i) :
$$y_{it} = \beta_0 + \beta_l I_{it} + \beta_k k_{it} + ...$$

(ii) : $y_{it} = \beta_0 + \beta_l^{old} I_{it} + \beta_k^{old} k_{it} + \mathbf{1}_{\{NSP \ Kilns_{it}\}} (\beta_0^{new} + \beta_k^{new} k_{it} + \beta_l^{new} I_{it}) + ...$
(iii) : $y_{it} = \beta_0 + \beta_l I_{it} + \beta_k k_{it} + \beta_0^{new} \mathbf{1}_{\{NSP \ Kilns_{it}\}} + ...$

	(i)	(ii)	(iii)
	Pooling	Separately		Pooling
	Both Tech.	Old Tech	New Tech	Both Tech.
β_k	0.971	0.778	0.907	0.872
	(0.110)	(0.110)	(0.085)	(0.071)
β_{I}	0.184	0.259	0.099	0.237
	(0.140)	(0.103)	(0.096)	(0.094)
β_0^{new}	-	-	0.106	0.060
(TFP Gain)	-	-	(0.710)	(0.103)
Ν	1,408	1,4	408	1,408

Why Do We Care about Technology Information? Implications for markups and monopsony power

Implications for markups and monopsony power

- Other explanations for the decline of labor share
 - Increasing market powers among firms
- Economy-wide markups are rising (De Loecker et al., 2020)
- The remaining section: an industry study of market power with production approach
 - Do markups increase over time?
 - Is worker power declining?
- The absence of technology information leads to qualitatively different implications

Do markups increase over time? (1/3): One Technology

"Production Approach" (De Loecker and Warzynski, 2012)

- Consider the following environment
 - Firm *i* has production technology: $Y_i = A_i K_i^{\beta_k} L_i^{\beta_l}$
- Using cost minimization,

$$\mathsf{Markup}_i \equiv \frac{P_{it}}{MC_{it}} = \beta_I \frac{P_i Y_i}{w L_i}, \qquad \widehat{\mathsf{Markup}}_i = \hat{\beta}_I \frac{P_i Y_i}{w L_i}$$

- Industry-level markup is a weighted average:

$$\widehat{\mathsf{Markup}} = \sum \omega_i \widehat{\mathsf{Markup}}_i$$

Do markups increase over time? (2/3): Two Technologies

- Two types of production technology $\beta_{L}^{N} < \beta_{L}^{O}$:
 - Labor-intensive (old) technology: $Y_i = A_i K_i^{\beta_k^O} L_i^{\beta_i^O}$ Capital-intensive (new) technology: $Y_i = A_i K_i^{\beta_k^N} L_i^{\beta_i^N}$
- Assuming one technology, we would get one number for $\hat{\beta}_{I}$.
- The estimated markups for type τ technology would be biased:

$$\widehat{\mathsf{Markup}}_{i}^{\tau} = \hat{\beta}_{I} \frac{P_{i} Y_{i}}{w L_{i}} = \frac{\hat{\beta}_{I}}{\beta_{I}^{\tau}} \mathsf{Markup}_{i}^{\tau} \stackrel{\leq}{\leq} \mathsf{Markup}_{i}^{\tau}$$

- If production technology shifts from labor-intensive to capital-intensive, markups would seemingly increase. $(\beta_{\iota}^{N} < \beta_{\iota}^{O})$

Do markups increase? (3/3): With and w/o Tech. Info.

Labor market power: MRPL and Wage

- Do firms suppress wages below MRPL?
- MRPL under Cobb-Douglas: $\beta_I \frac{PY}{L}$ (= wage)
- The estimated MRPL for τ type technology are then biased:

$$\widehat{\mathsf{MRPL}}_{i}^{\tau} = \hat{\beta}_{I} \frac{P_{i} Y_{i}}{L_{i}} = \frac{\hat{\beta}_{I}}{\beta_{I}^{\tau}} \mathsf{MRPL}_{i}^{\tau} \stackrel{\leq}{\leq} \mathsf{MRPL}_{i}^{\tau}$$

- If production shifts from labor-intensive firms to capital-intensive firms, industry-level MRPL would seemingly increase.

Gap between MRPL and Wage Growth (log change since 1970)

Conclusion

- New technology adoption/diffusion explains the decline of the labor share
- Information on plant-level technology is a key to rejecting other explanations
- Indirectly observe technological change
 - \rightarrow Literature on PF estimation with factor-augmenting productivity (e.g., Doraszelski and Jaumandreu(2018), Raval(2022), Demirer(2022))