プラットフォームにおける フェイクレビューの効果とレーティングシステムの設計

安井 佑太 (Email: yasu.1127.econ@gmail.com) カリフォルニア大学ロサンゼルス校 (博士課程大学院生) 2021年5月21日 CPRCセミナー

プラットフォームにおけるレーティングの効果

audio-technica
Professional Monitor
Headphones, ATHM20x/1.6, Cable
Length: 4.6 ft (1.6
m), Studio
Recording,
Instrument Practice,
Mixing, DJ, Games,
Workhome Working,
Telework
Brand: Audio Technica(オーディオテ
クニカ)
992 ratings

43 answered questions

- ▶ アマゾンなどのプラットフォームにおけるレーティングは
 - ► 広告を代替しつつあり、(Hollenbeck et al, 2019))
 - ► 新聞での書評よりも大きな効果を持つ (Reimers and Waldfogel, 2020)

Hollenbeck, B., Moorthy, S., & Proserpio, D. (2019). Advertising Strategy in the Presence of Reviews: An Empirical Analysis. *Marketing Science*, 38(5), 793–811. Reimers, I. C., & Waldfogel, J. (2020). Digitization and Pre-Purchase Information: The Causal and Welfare Impacts of Reviews and Crowd Ratings.

フェイクレビューの存在

- ▶ レーティングが売り上げを大きく左右するため、売り手はレーティングを何とかして上げたい。
 - ▶ レーティングを操作する誘因
- Dwoskin, E., & Timberg, C. (2018). How merchants use Facebook to flood Amazon with fake reviews. Washington Post.
 - フェイクレビュー検出ソフトを使用して
 - ▶ ブルートゥースヘッドホンの50.7%
 - ▶ ブルートゥーススピーカーの58.2%
 - ▶ 男性ホルモン増強剤の67.0% が怪しいレビューであることと検出した
- ▶ 2019年 フェイクレビューについてFTCによる初の起訴(v. Cure Encapsulations)
- ► 2019年 CMAがフェイクレビューの実態調査プログラムを開始

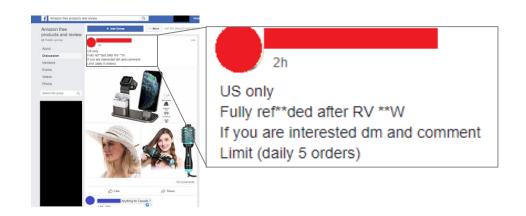
フェイクレビューの存在

▶ 実際にフェイクレビューを呼びかける投稿



▶「レビューしてくれれば全額返金します」

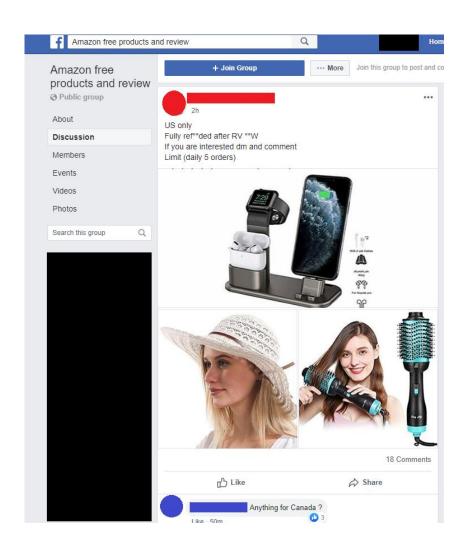
フェイクレビューの仕組み



- 1. 売り手がSNS等に商品情報とレビュー後返金の旨を投稿
- 2. サクラが売り手に連絡を取る
- 3. サクラが商品を購入して高評価のレビューをつける
- 4. レビューの確認後、PayPalなどを通じて返金
- 5. プラットフォームは検出された怪しいレビューを削除
- 6. 残ったレビューがレーティングに反映される

サクラ行為の工夫

- Oak, R. (2021). "The Fault in the Stars: Understanding the Underground Market of Amazon Reviews" http://arxiv.org/abs/2102.04217
 - ▶ フェイクレビューと取りまとめるエージェントの存在
 - 商品名やリンクを公開せず、商品画像を表示して検索によって 商品にたどりつかせる
 - ▶ 購入後あえて10日以上おいてからレビューを行わせる
 - ▶ 他にも多くの商品をレビューしている場合には追加料金を支払う



フェイクレビューの効果

- He, S., Hollenbeck, B., & Proserpio, D. (2021), "The Market for Fake Reviews", SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3664992
 - ▶ フェイスブックでの投稿後のアマゾンにおけるレーティングの変化を分析

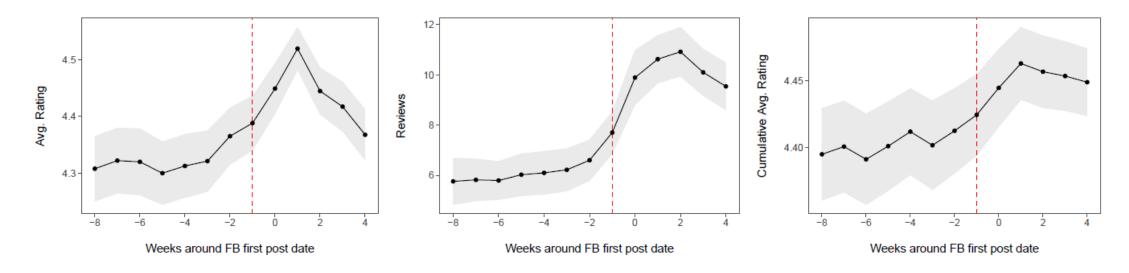


Figure 3: 7-day average ratings, 7-day average number of reviews, and cumulative average ratings before and after fake reviews recruiting begins. The red dashed line indicates the first time we observe Facebook fake review recruiting.

"Controlling Fake Reviews"

https://ssrn.com/abstract=3693468 にて公開中)

研究の目的

フェイクレビューをどのように抑えるべきなのか?

- そもそも抑えるべきなのか?
 - フェイクレビューに溢れているとわかっているならば、(合理的な)消費者はその分レーティングを割り引いて評価することができるのでは?
 - ▶ もし、高品質な商品の売り手の方がフェイクレビューをするということがあれば、 むしろフェイクレビューがあることでレーティングの情報量が上がるのでは?
 - ▶ どういう売り手がフェイクレビューを生み出しているのか?

その他の観点

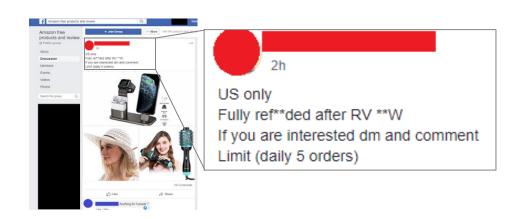
- ▶ ナイーブな消費者の存在(最後に紹介します。)
- ▶ 公正な競争環境の確保という側面(以下のモデルでは扱いません。)

研究の目的

フェイクレビューをどのように抑えるべきなのか?

- ▶ 以下のモデルでプラットフォームができる操作:
 - 1. レビューに対する検閲の強化
 - ► 検閲する人員·AIの強化
 - 2. レーティングを計算する際の比重の置き方
 - ▶ 新しいレビュー v.s. 古いレビュー
 - 3. 取引手数料(本スライドでは省きますが、論文内で紹介しています。)

フェイクレビューの仕組み (再訪)



- 1. 売り手がSNS等に商品情報とレビュー後返金の旨を投稿
- 2. サクラが売り手に連絡を取る
- 3. サクラが商品を購入して高評価のレビューをつける
- 4. レビューの確認後、PayPalなどを通じて返金
- 5. プラットフォームは検出された怪しいレビューを削除
- 6. 残ったレビューがレーティングに反映される

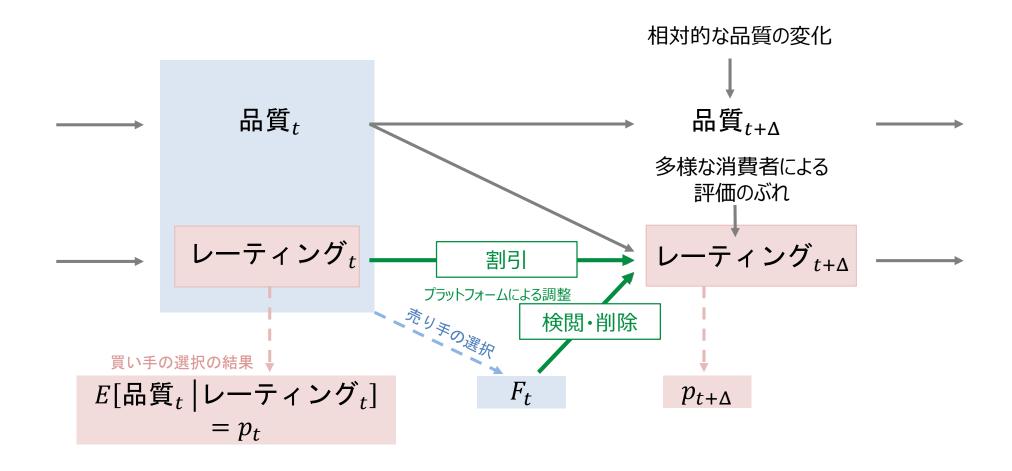
(サクラへの払い戻し額) > (サクラからの売り上げ) プラットフォームによる手数料の存在

モデル

- ▶ 市場参加者:
 - ▶ 長期間 (無限期間) 存在する売り手
 - ▶ 毎期入れ替わる多数の買い手
- ▶ 各期の行動
 - ▶ 売り手:
 - トフェイクレビューの量を選択する: F_t
 - ▶ (商品の販売量は固定: 表記の簡便化のため"販売量=1"と置く)
 - ▶ 買い手:
 - ▶ 商品を買うかどうかを決定
 - ightharpoonup これにより均衡価格が定まる: $p_t = E[品質_t | \nu- \neg \tau
 u)$
- ▶ 売り手の各期の利潤

ト
$$Profit_t = (1-\tau)p_t(1+F_t)$$
 - p_tF_t - $\frac{1}{2}F_t^2$ 収入 サクラへの 払い戻し その他の費用

レーティングとフェイクレビューの相互関係



▶ 売り手は長期に渡る利潤の和を高めようとフェイクレビューの量を選択します。

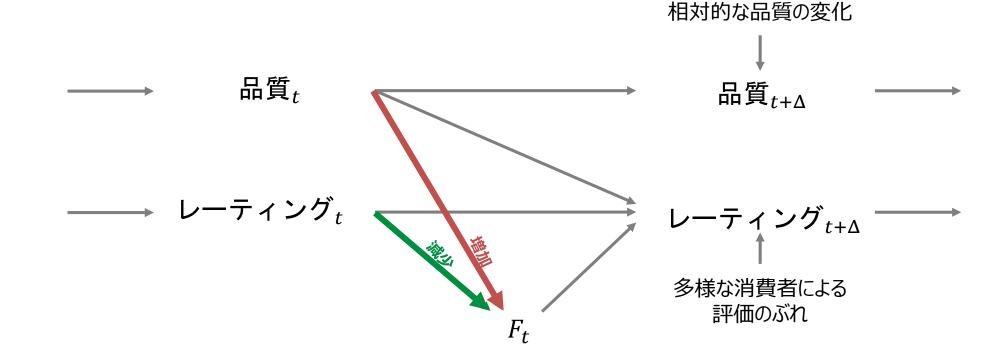
結果

均衡のふるまい

- 1. レーティング_t $\uparrow \Rightarrow F_t \downarrow$
 - $Profit_t = (1 \tau)p_t(1 + F_t) p_tF_t \frac{1}{2}F_t^2 = (1 \tau)p_t \tau p_tF_t \frac{1}{2}F_t^2$
 - ▶ レーティング $_t$ ↑⇒ p_t ↑⇒ $\tau p_t F_t$ ↑: フェイクレビューについての限界費用の増加
 - ▶ フェイクレビューを使う誘因が低くなる
- 2. 品質 $_t \uparrow \Rightarrow F_t \uparrow$
 - ▶ 長期利潤の和が今期のレーティングについて逓増
 - ▶ レーティングが高ければ少しのレーティングの変化がより大きく影響を与える
 - ▶ 品質 $_t$ ↑ ⇒ レーティング $_{t+\Delta}$ ↑⇒少しでも(来期の)レーティングを高めれば長期利潤が大きく増加
 - (フェイクレビューは来期のレーティングを高める)
 - ▶ フェイクレビューを使う誘因が高まる

均衡のふるまい(図示)

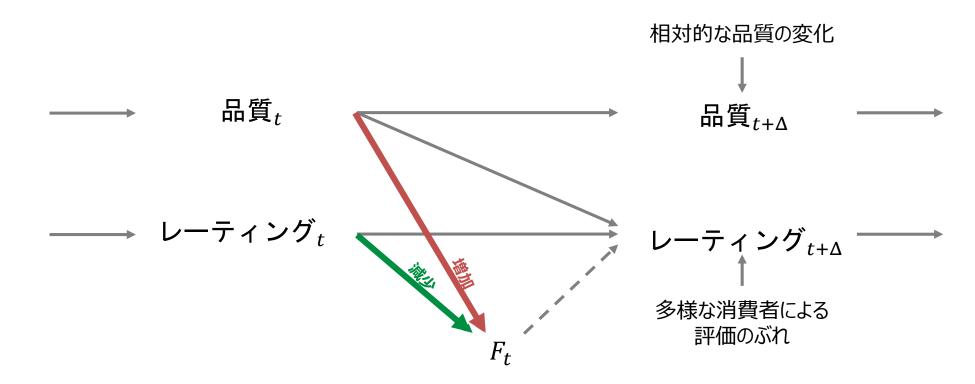
- 1. レーティング $_t \uparrow \Rightarrow F_t \downarrow$
- 2. 品質 $_t \uparrow \Rightarrow F_t \uparrow$



検閲の効果

検閲を強化すると、

- 1. フェイクレビューの量の期待値は減少する
- 2. 売り手は品質やレーティングの変化に合わせてフェイクレビューの量を調整し続ける
- 3. ただし、それは将来のレーティングを左右しなくなる



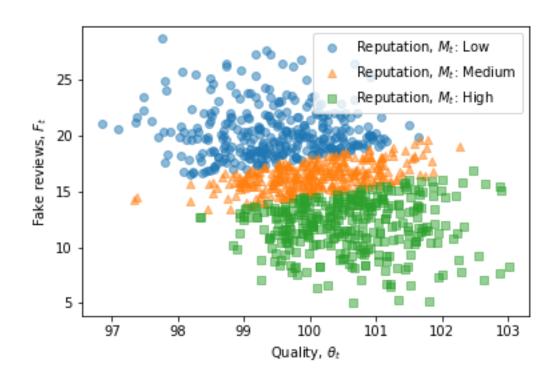
実証分析とのつながり

データとの整合性

- 1. レーティング $_{t} \uparrow \Rightarrow F_{t} \downarrow$: Luca and Zervas (2016)のYelpを対象とした 分析と整合的
- 2. 品質 $_{t} \uparrow \Rightarrow F_{t} \uparrow$: 真の品質を観測するのが難しいため実証が難しい (最近の取り組みについて最後にご紹介します)

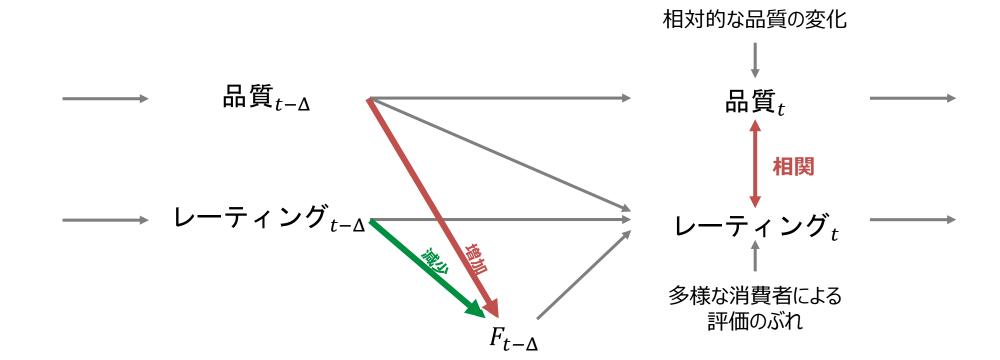
実証分析への含意

- ▶ レーティング_t ↑ ⇒ F_t ↓ & 品質_t ↑ ⇒ F_t ↑:
 - ▶ レーティング ≠ 品質の代理変数
 - 真の品質についてのデータがあったとしてもレーティングも回帰式に入れる必要 (欠落変数バイアスの恐れ)



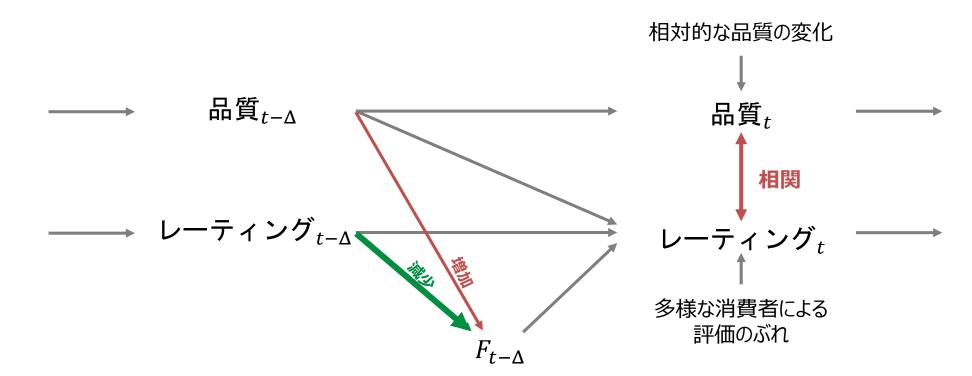
規範的分析

- ▶ 規範の尺度: レーティング_t と品質_tの相関係数
- ▶ 均衡の影響:
 - 1. レーティング $_{t} \uparrow \Rightarrow F_{t} \downarrow$: 古いレビューの比重を下げる効果
 - 2. 品質 $_{t} \uparrow \Rightarrow F_{t} \uparrow$: 相関を上げる効果



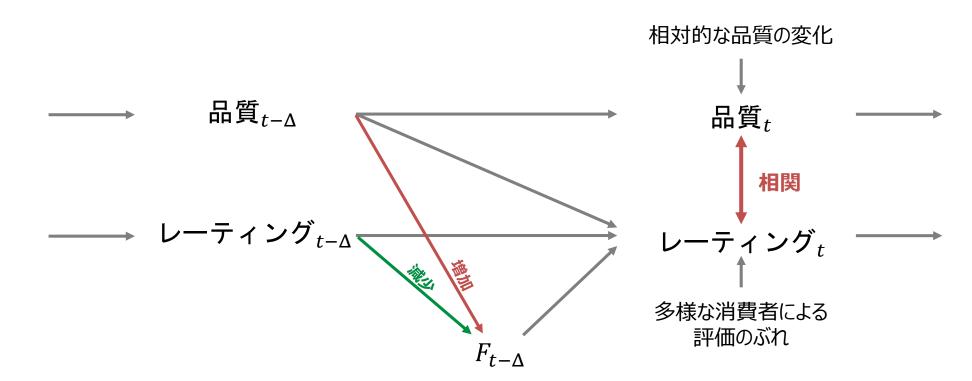
規範的分析:レビューの重み付け

- ▶ トレード・オフ:古いレビューの比重が大きいと...
 - ▶ 品質の変化を反映するのが遅れるが
 - ▶ 新しいレビューに含まれる評価のブレに対してより頑健になる
- ▶ フェイクレビューは古いレビューの重みを実質的に押し下げる効果を持つ
 - ⇒ プラットフォームは古いレビューの比重をあらかじめ上げておいた方がよい



規範的分析:フェイクレビューの検閲と削除

- フェイクレビューの検閲と削除⇒ フェイクレビューの影響を抑えることができる
- ただし、それは相関係数をむしろ下げる可能性がある。
 - ▶ ケース1: 古いレビューの比率がもともと高すぎた場合
 - ▶ ケース2:品質とフェイクレビューの正の関係が強い場合
 - ▶ 売り手が将来利得を重視しているときにこの正の関係が強くなる

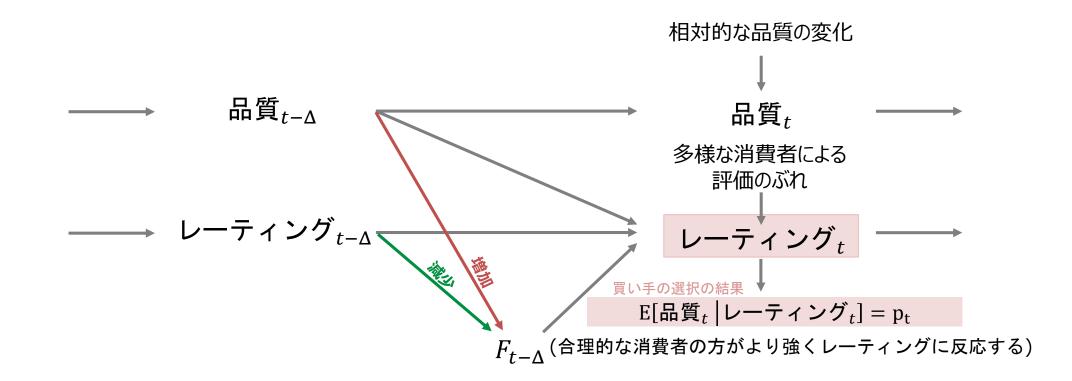


"ナイーブ"な消費者

- 期待形成: E [品質_t |レーティング_t]
 - ▶ 合理的な消費者は売り手の戦略を考慮に入れた上でレーティングを評価できる
 - ▶ レーティングがフェイクレビューで盛られていてもその分を割り引いて評価できる
 - ▶ ただし、現実にはレーティングが盛られていることに気づかない消費者も存在している。
- ▶ "ナイーブ"な消費者
 - ▶ フェイクレビューが無い場合の品質とレーティングの関係を理解している
 - フェイクレビューが存在していないと思っている
 - ▶ フェイクレビューが存在する限り、期待(E[品質 $_t$ |レーティング $_t$])にバイアスが生じる
 - ▶ 高すぎる価格で商品を購入してしまう
- ▶ 以下では、市場の合理性を緩めたモデルを考えます。
 - ▶ $p_t = \eta E^{Rational} \left[品質_t \left| \nu \tau_1 \rangle \mathcal{J}_t \right| + (1 \eta) E^{Naive} \left[品質_t \left| \nu \tau_1 \rangle \mathcal{J}_t \right| \right]$

"ナイーブ"な消費者:結果

- 1. 均衡において (i) レーティング $_t \uparrow \Rightarrow F_t \downarrow$, (ii) 品質 $_t \uparrow \Rightarrow F_t \uparrow$
 - ▶ これまで議論した合理的な消費者への影響は残る
- 2. 検閲を強化することで、ナイーブな消費者が直面するバイアスを減らすことができる
- 3. 市場が**合理的なほど、フェイクレビューが多くなる**



本研究の結果一覧

均衡の性質:

- ▶ フェイクレビューは、レーティングが上がると減り、品質が上がると増える
- ▶ 検閲の強化により
 - フェイクレビューの効果は薄まる
 - ▶ フェイクレビューの数自体も減少する

規範的分析:

- ▶ 合理的な消費者にとって:
 - ▶ 検閲によるフェイクレビューの減少はむしろレーティングの情報量を下げる可能性
 - ▶ (フェイクの無いケースと比べて) 古いレビューの比重を上げることでレーティングの情報量が上がる
- ▶ ナイーブな消費者にとって:
 - 検閲の強化によって、バイアスを減らすことができる

モデル・結果の妥当性

- ▶ 本研究でとらえていない評価軸
 - ▶ 公正な競争環境の確保
- モデルでとらえていない要素
 - ▶ 売り手の参入・退出
 - ▶ 若い売り手の評判の形成
 - ▶ 騙した後の退出・再参入
 - ▶ フェイクレビューと価格・数量の同時決定
 - ▶ 他の売り手との代替関係

モデル・結果の妥当性: 品質 $_t \uparrow \Rightarrow F_t \uparrow$?

- ▶ 実証分析の難しさ:真の品質の計測が難しい
- He, S., Hollenbeck, B., & Proserpio, D. (2021), "The Market for Fake Reviews", SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3664992

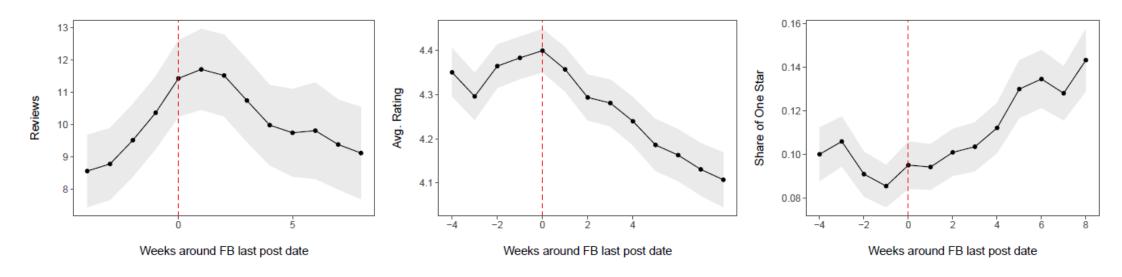


Figure 10: 7-day average number of reviews, average ratings, and average share of one-star reviews before and after fake reviews recruiting stops. The red dashed line indicates the last time we observe Facebook fake review recruiting.

本研究の解釈・まとめ

- ▶ "レーティング $_{t}$ ↑⇒ F_{t} ↓"の効果はデータともある程度整合的
 - ▶ これは古いレビューの比重を実質的に下げる効果がある
 - ▶ プラットフォームは古いレビューの比重を上げた方がよい
- ▶ "品質 $_t$ ↑ ⇒ F_t ↑"の効果は理論的にも実証的にも議論の余地が大きい
 - ▶ 本研究は一つの可能性を理論モデルを用いて示している
 - ▶ 実証上の課題:真の品質を観測することが難しい
 - ▶ 理論上の問題:参入・退出などがある場合にもこの関係が成り立つか。
 - ▶ この効果がある場合には、検閲強化がレーティングの情報量を下げる可能性がある
- ▶ ナイーブな消費者はフェイクレビューが存在すると高すぎる価格で商品を購入してしまう
 - 検閲はそれを抑える効果がある