Dual-Channel Supply Chain, Multilateral Contracting, and Vertical Foreclosure

Cong Pan

Faculty of Economics, Kyoto Sangyo University

@CPRC

Background

- A dual-channel supply chain (DSC):
 An upstream manufacturer supplies DIRECTLY by herself, while INDIRECTLY through multiple downstream retailers.
 - Nike supplies various independent fashion shops while selling through the official online store;
 - In Japan, Mercedes-Benz sells though Yanase and Stern, while selling through its own direct store.
- There are also manufacturers using only the DIRECT channel:
 - Uniqlo never sells through independent retailers;
 - Volkswagen sells cars through only direct stores.

Secret contract problem

- In a DSC, it is difficult for a monopoly manufacturer to commit to offering a consistent contract to all the retailers.
 - The supplier can customize contracts to each retailer based on cost (a legal approach in Japan);
 - In a long-run, the manufacturer can also re-contract with a retailer without informing the others.
- But, the retailers are competing. They want to know the cost structure of the rival!
- The supplier's "secret contract" problem gives rise to the retailers' distrusts.
 - Will I be harmed in the competition with the others?
- The distrusts in turn dampen the manufacturer's market power.

My research questions and findings

- I consider a DSC with secret contracts. Which retailer to supply?
- (1) A monopoly supplier chooses all the retailers who are more efficient than herself and forecloses all the less efficient ones.
 - I endogenize the supply chain structure: will the manufacturer choose DSC or "Direct channel only"?
- (2) A monopoly supplier will choose DSC if the inverse demand function is strictly concave (P''(Q) < 0) and the number of retailers is sufficiently small; she will not choose DSC if the inverse demand function is strictly convex (P''(Q) > 0).
 - Which structure generates the largest consumer surplus: Direct channel only? Indirect channel only? DSC?
- (3) Indirect channel only!

Literature on secret contract

- When supplying multiple retailers, secret contract dampens a monopoly manufacturer's market power and results in oversupply (Hart&Tirole, 1990).
- Monopolist's attempts to solve this problem:
 - Nondiscrimination clauses (Marx&Shaffer, 2004):
 - if a retailer finds the manufacturer offers a more beneficial contract to the rival(s), the he asks for the same the contract;
 - Manufacturer firm's capacity constraint (Avenel, 2012):
 - the constraint acts as a commitment tool;
 - Vertically integrating with one retailer and foreclosing the others (Rey&Tirole, 2007; Reisinger&Tarantino, 2015).

5 / 24

Reisinger&Tarantino (2015)'s findings

If M integrates with R_2 :

- 1. R_1 will not be foreclosed iff $c_1 < c_2 \Rightarrow DSC$.
- 2. R_1 will be foreclosed iff $c_1 \ge c_2 \Rightarrow$ Direct channel only.
 - The marginal cost is the only determinant.

- Key assumptions:
 - 1. The vertically integrated firm $(M \text{ and } R_2)$ faces only one rival. 2. No secret contract in the DSC.

Difference of Pan (2019)

- *M* supplies *n* retailers; *M* can sell directly; *M* can decide to whom to supply, and whether to sell directly.
- Novelties: 1. Retailers compete in the indirect channel. 2.
 Secret contracts always exist in the DSC.

Settings and equilibrium concept

- Players: M and R_i , $i \in N$.
- S.1 M decides whether to supply R_i ; if yes, SECRETLY offering $\{w_i, f_i\}$;
- S.2 Quantity decisions.
 - Contract equilibrium: given others' contracts, $\{w_i, f_i\}$ maximizes the bilateral joint profit of M and R_i .
 - Weak perfect Bayesian equilibrium.

Demand assumptions

• Homogeneous products. P(Q): continuous, nonnegative, strictly decreasing, and third-order differentiable, choke price.

Assumption 1

$$\epsilon(Q) \equiv rac{P''(Q)Q}{P'(Q)} > -1 \Longleftrightarrow P'(Q) + P''(Q)Q \le 0 ext{ (Vives, 1999)}.$$

• Ass. 1 is for the concavity of profit function and a well defined equilibrium.

Assumption 2

$$\epsilon(Q) \ge \alpha(Q)$$
, where $\alpha(Q) \equiv \frac{P'''(Q)Q}{P''(Q)}$ (Ara&Ghosh, 2016).

- Demand curvature is larger than the slope curvature, or equivalently, $\epsilon'(Q)Q/\epsilon \leq 1$ (not necessarily needed).
- Any P(Q) with constant price elasticity can satisfy.

Benchmark: no direct selling

- S.2: R_i 's belief about others' wholesale prices: $\bar{\mathbf{w}}_{-i} \equiv \{\bar{w}_j\}_{j \in N \setminus \{i\}}$. R_i 's quantity: $q_i(w_i, \mathbf{c}) \equiv q_i(w_i, \bar{\mathbf{w}}_{-i}, \mathbf{c})$, $\mathbf{c} \equiv \{c_1, ..., c_M\}$.
 - R_i 's belief on others' quantities: $\bar{\mathbf{q}}_{-i}(\mathbf{c}) \equiv \{q_j(\bar{w}_j, \mathbf{c})\}_{j \in N \setminus \{i\}}$.
- S.1: M sets $f_i = (P(q_i(w_i, \mathbf{c}), \overline{\mathbf{q}}_{-i})(\mathbf{c}) w_i)q_i(w_i)$, and solves

$$\max_{\mathbf{w}} \Pi^I \equiv \sum_{i} (P(q_i(w_i, \mathbf{c}), \bar{\mathbf{q}}_{-i}(\mathbf{c})) - c_i) q_i(w_i, \mathbf{c}).$$

- The optimal w_i only maximizes M and R_i 's **bilateral** profit.
- FOC: $\frac{\partial q_i(w_i,\mathbf{c})}{\partial w_i}(P'(q_i,\mathbf{q}_{-i})q_i + P(q_i,\bar{\mathbf{q}}_{-i}) c_i) = 0.$ The equilibrium quantity is an oligopoly level.
- *M* must supply all the retailers, although she is an upstream monopolist.

Commitment problem in DSC

- S.2: R_i forms his belief about others' wholesale prices $(\bar{\mathbf{w}}_{-i})$. R_i 's quantity: $q_i(w_i, \mathbf{c}) \equiv q_i(w_i, \bar{\mathbf{w}}_{-i}, \mathbf{c})$, $\mathbf{c} \equiv \{c_1, ..., c_M\}$.
 - R_i 's belief on others' quantities: $\bar{\mathbf{q}}_{-i}(\mathbf{c}) \equiv \{q_j(\bar{w}_j, \mathbf{c})\}_{j \in N \setminus \{i\}}$.
 - M can observe all contracts, hence choosing $q_M(\mathbf{q}_R(\mathbf{w}, \mathbf{c}), c_M) \equiv q_M(q_1(w_1, \mathbf{c}), ..., q_n(w_n, \mathbf{c}), c_M)$.
- S.1: M solves $\max_{\mathbf{w}} \Pi^{DSC} \equiv$

$$\sum_{i=1}^{n} \left(P(q_i(w_i, \mathbf{c}), \bar{\mathbf{q}}_{-i}(\mathbf{c}), q_M(q_i(w_i, \mathbf{c}), \bar{\mathbf{q}}_{-i}(\mathbf{c}), c_M) \right) - c_i \right) q_i(w_i, \mathbf{c})$$

$$+ \left(P(\mathbf{q}_{\mathsf{R}}(\mathbf{w},\mathbf{c}),q_{\mathsf{M}}(\mathbf{q}_{\mathsf{R}}(\mathbf{w},\mathbf{c}),c_{\mathsf{M}})) - c_{\mathsf{M}}\right)q_{\mathsf{M}}(\mathbf{q}_{\mathsf{R}}(\mathbf{w},\mathbf{c}),c_{\mathsf{M}}).$$

* w_i ONLY maximizes M and R_i 's **bilateral** joint profit; the impact on the rivals \mathbf{R}_{-i} are neglected.

Reduced-form game

• The FOC in the contracting stage:

$$egin{aligned} & rac{\partial q_i(w_i, \mathbf{c})}{\partial w_i} \ & imes \left(P'(Q)\left(1 + rac{dq_M(q_i, \mathbf{\bar{q}}_{-i})}{dq_i}
ight)q_i + c_M - c_i
ight) = 0. \end{aligned}$$

(Assumption 3 for SOC: P'''(Q) sufficiently small).

- Notice: each retailer's equilibrium quantity is decided in Stage 1.
- The contracting secrecy makes the retailers the Stackelberg leaders, and *M* the follower.
- Solving *n* FOCs, we have $\{q_1^*(\mathbf{c}),...,q_n^*(\mathbf{c})\}$. Then,

$$Q_R^*(\mathbf{c}) = \sum_{i=1}^n q_i^*(\mathbf{c}, c_M); \ q_M^*(\mathbf{c}) = q_M(Q_R^*(\mathbf{c}), c_M).$$

Proposition 1: whom to supply in DSC?

• Let $\underline{c} \equiv \min\{c_1, ..., c_n\}; \ \overline{c} \equiv \max\{c_1, ..., c_n\}.$

Proposition 1

Suppose Assumption 1, 2 and 3 hold. In a DSC, M forecloses all the retailers if M is weakly more efficient than all retailers $(c_M \leq \underline{c})$; if otherwise, M supplies all those who are more efficient than herself.

- ullet Proof: $P'(Q)\left(1+rac{dq_M(q_i,ar{\mathbf{q}}_{-i})}{dq_i}
 ight)q_i+c_M-c_i=0.$
- Intuitions: despite of contracting secrecy, \mathbf{c} is known to all. Given any off-equilibrium-path beliefs $\mathbf{\bar{q}}_{-i}$, R_i with $c_i \geq c_M$ is foreclosed by a strong Stackelberg follower.
- * It is best for M to supply R_i with $c_i = \underline{c} \le c_M$ and foreclose all the others. But she cannot, because of lacking commitment.

DSC vs. Direct channel only ("D")

- Direct channel only: $\Pi^D = (P(q_M^{**}) c_M)q_M^{**}$.
- DSC: At $c_M = \underline{c}$, $Q_R^* = 0$, so $\Pi^{DSC} = \Pi^D$.

•
$$\frac{d\Pi^D}{dc_M} = -q_M^{**}; \; \frac{d\Pi^{DSC}}{dc_M} = -\left((n-1)Q_R^{*\prime}(c) + \frac{n}{P'(Q)}\right)c_M - q_M^*.$$

cong.pan@cc.kyoto-su.ac.jp

• The condition for $\Pi^{DSC} > \Pi^D$: $\frac{d\Pi^D}{dc_M} < \frac{d\Pi^{DSC}}{dc_M}$

DSC vs. Direct channel only ("D")

$$\frac{d\Pi^{D}}{dc_{M}} < \frac{d\Pi^{DSC}}{dc_{M}}$$

$$\iff \underbrace{\left((n-1)\frac{dQ_{R}^{*}(\mathbf{c})}{dc_{M}} + \frac{n}{P'(Q)}\right)c_{M}}_{output-shifting\ effect} < \underbrace{q_{M}^{**} - q_{M}^{*}}_{self-response\ effect}$$

• If M chooses DSC, two requirements need to be satisfied: (1) An increase in c_M does not shift too much output to $Q_R^*(\mathbf{c})$; (2) M can effectively reduce q_M in her direct channel.

Proposition 2: the condition of DSC

• Let
$$\delta_M = \frac{q_M^*}{q_M^* + Q_R^*}$$
.

Proposition 2

Suppose Assumption 1, 2, 3 hold. Suppose $\bar{c} \leq c_M$ and $num\{i \in N \mid c_i = \underline{c}\} \geq 2$. Then, for any $\delta_M \in (0,1)$,

- (i) M chooses DSC in equilibrium if $\frac{dQ_R^*/dc_M}{Q_R^*/c_M} < 1/(n-1)$, i.e., P''(Q) < 0 and n is smaller than a cutoff, $\hat{n}(\alpha(Q), \epsilon(Q))$;
- (ii) M chooses "direct channel only" in equilibrium if $\frac{dQ_n^*/dc_M}{Q_n^*/c_M} > 1/(n-1)$, i.e., P''(Q) > 0.
 - Part (ii) holds even for $\delta_M \to 0$ or n=2.
 - Interpretations: (1) DSC will not be chosen even if the retailers have a sufficiently large cost advantage; (2) the minimum level of competition may harm *M*.

Intuitions of Proposition 2: output-shifting effect

• When c_M increases:

- M makes R_n to sell more through w_i : $q_n^* \uparrow$.
- Due to the secret contracts, R_n neglects the **negative** impacts on other retailers: e.g., $(P(q_n^*\uparrow, q_{-n}^*) c_1)q_1^*$.
- In all, there is an excessive output-shifting to Q_R^* .

Intuitions of Proposition 2: self-response effect

- How about q_M ? Can M effectively reduce her quantity to alleviate the excessive output-shifting on Q_R^* ?
- We see how the **Self-response effect** works.
- Properties on M's best response function $q_M(Q_R)$:

Lemma 1

Suppose Assumption 1, 2, 3 hold. $q_M''(Q_R) \ge 0$ iff P''(Q) < 0, and $q_M''(Q_R) \le 0$ iff P''(Q) > 0.

Self-response effect

• When P''(Q) > 0, $q_M(Q_R)$ is concave.

- M's instantaneous reaction is to reduce q_M by $|q_M'(Q_R^*)|Q_R^*$.
- Since $q_M''(Q_R) < 0$, $q_M^{**} q_M^* < |q_M'(Q_R^*)|Q_R^*$.
- M cannot effectively response to the excessive output-shifting.
- DSC is not chosen because:
 1. output shifting effect is too strong;
 2. self-response effect is too weak.

Convex demand function with a long tail area

Implications

- With a convex demand function, M prefers monopoly because
 - In DCS, the retailers are easily fall into "head-to-head" competition to capture the low-end consumers' demands.
 - The retail price becomes too low such that the manufacturer loses control of the downstream market.
- With a concave demand function, a monopoly manufacturer prefers DCS because
 - The retailers refrain from intense competition because consumers' willingness to pay is high.
 - The manufacturer can take advantage of the retailers' cost advantage and realize market power.
- We can estimate whether a DCS or a monopoly will be chosen based on demand characteristics rather that cost information.
 - Demand data is more accessible than cost data.
 - This model is potentially testable by empirical methods.

Proposition 3: welfare detrimental direct selling

• Welfare comparison between three systems: indirectly channel only (n firms compete), direct channel only (monopoly), DCS (n+1 firms compete):

Proposition 3

"Direct channel only" generates the lowest consumer surplus; "Indirect channel only" generates the highest consumer surplus.

* Comparison between "indirect channel only" and DCS: one more firm but lower price. Why?

Intuition of Proposition 3

Indirect channel only:

 Due to secret contract, M cannot control the retailers' competition.

DCS:

- The direct channel acts as a strategic tool because M acts as a Stakelberg follower:
- 1. each retailer supplies less;
- 2. *M* recaptures her control of the supply chain, meaning a stronger market power.
 - Policy implication: a seemingly pro-competitive market entry without vertical foreclosure can be anti-competitive.

Summary

What I did:

- I incorporated retailers' competition in to the DSC with secret contracts.
- The model can simultaneously capture "distribution imperfection" and "contracting imperfection."
 What I found:
- A simple way to predict whether DSC will be chosen is to focus on $\frac{dQ_R^*/dc_M}{Q_R^*/c_M}$ and n;
- Market characteristics like P''(Q) plays a decisive role.
- Market entry without vertical foreclosure can be anti-competitive.