イノベーションへの影響メカニズムに基づく具体的態様を左右する要素【水平型企業結合】

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
1	市場集中度	独占であれば <mark>置換効果</mark> が働くため研究開発インセンティブは生	独占であれば、専有可能性、シナ	Igami, Uetake (2020)	142
		じにくい。	ジー効果(補完効果)といったプ		
		2社や3社になるにつれ <mark>先取りインセンティブ</mark> が働くため、研究	ラスの影響より置換効果(共食い		
		開発インセンティブは急激に高まる。	効果)が働き、研究開発インセン		
		4~5社になると増加傾向が停滞して平坦になる(逆リ字型には	ティブは生じにくい。		
		ならない)。	市場集中度が低下し競争が生じる		
2	市場集中度	独占又は複占の場合、合併による相乗効果(シナジー効果)及び	につれ、先取り効果(レント消失	Igami, Uetake (2020)	142
		将来の独占的利益(<mark>専有可能性</mark>)が研究開発インセンティブに与	効果)も生じるが、複占又は3社		
		えるプラスの効果を考えても、競争圧力の低下による負の効果の	寡占の場合はなお置換効果(共食		
		方が支配的である。	い効果)が支配的である。一定程		
			度まで増えると研究開発インセン		
			ティブの増加傾向は停滞する。		
3	市場集中度	合併により独占になると、潜在的な参入に直面した場合 <mark>、(先取</mark>	独占の場合、先取り効果(レント	Katz, Shelanski	18
		り効果により) 潜在的な競合企業を阻止するために知的財産権を	消失効果)によって知的財産権を	(2007)	
		獲得する可能性が高いが、 <mark>(置換効果により)</mark> 製品を市場に投入	獲得するインセンティブは高まる		
		しない可能性が高い。既存企業が2社以上存在する寡占の場合	ものの、置換効果(共食い効果)の		
		は、他方企業による当該参入阻止効果のフリーライダー問題が生	ために、取得した知的財産権を用		
		じるため製品改良を伴わない参入阻止は起きにくい。	いた製品投入はしない可能性が高		
			い。他に既存企業が存在すればフ		
			リーライドされる可能性があるた		
			め、製品投入しない参入阻止は起		
			きにくい。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
4	市場集中度	市場が集中している場合、製品市場の競争緩和による研究開発イ	そもそもの市場集中度が高い中で	Dow/Dupont EC (2017)	143
		ンセンティブへのプラスの影響は、イノベーションが競合する既	競争緩和が生じる場合、専有可能	Annex4	
		存製品や他方の研究プロジェクトの利益に与えるマイナスの影	性、シナジー効果(補完効果)とい		
		響(置換効果)によって相殺される可能性が特に高い。	ったプラスの影響は置換効果(共		
			食い効果)によるマイナスの影響		
			に相殺される。		
5	参入可能性	独占企業は置換効果が大きいため研究開発インセンティブが低	参入可能性が高ければ、先取り効	Jullian, Lefouli	5
		いという考えは、参入の脅威に直面していないという前提が重要	果(レント消失効果)により、独占	(2018)	
		であり、参入の脅威に晒されている場合は(<mark>先取り効果(レント</mark>	企業が参入を防いだ方が利益が大		
		消失効果)により)参入企業がイノベーションを起こす場合より	きいため、独占企業の方が研究開		
		も独占企業が参入を防いだ場合の利益が大きいため、独占企業の	発インセンティブが高い。		
		方が研究開発インセンティブが高い。	他方、参入可能性が低くなれば、		
6	参入可能性	実際に参入につながる可能性は低く最終的に成功しない場合で	先取り効果(レント消失効果)は	英国 CMA 合併評価 GL	19①
		も、参入や規模拡大に向けて取り組む"dynamic"な競争関係に	大きく低下し、研究開発インセン		
		立つ企業の排除は、SLC(競争の実質的な減少)につながる可能	ティブは低下する。		
		性がある。参入の脅威がなくなれば、他の企業はイノベーション	独占であって参入可能性も低い場		
		や将来の利益を守るための取組(<mark>先取り効果(レント消失効果)</mark>)	合には、先取り効果(レント消失		
		を大幅に削減する可能性がある。	効果)は消滅するため、イノベー		
7	参入可能性	独占の下では <mark>置換効果</mark> が支配的であり、参入可能性の低下により	ションは促進されない。	Igami, Uetake (2020)	142
		<mark>先取り効果</mark> も消滅することで、イノベーションは促進されない。			20①

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
8	参入可能性	潜在的な参入者が存在する場合、参入しようとする企業のみなら	既存企業と潜在的な参入者との企	英国 CMA 合併評価 GL	19①
	(潜在的な参	ず、既存企業も参入により利益が奪われるリスクを軽減するため	業結合により、参入可能性が低く		
	入者)	に、努力や投資を行うインセンティブ(<mark>先取り効果(レント消失</mark>	なれば、先取り効果(レント消失		
		<mark>効果)</mark>) があるが、潜在的な競争者との合併により合併企業(既	効果)は低下する。		
		存企業)のこのようなインセンティブが低下する可能性がある。	これは、参入や規模拡大に伴う投		
		この"dynamic"な競争の消失は、参入や規模拡大に伴う投資が	資が競争過程の重要な部分を占め		
		競争過程の重要な部分を占める場合に、より影響が大きくなる	る場合により顕著となる。		
		(成功するか否かが不確実なデジタルプラットフォームや多額			
		の投資を継続する必要がある医薬品など、市場参入に長期間を要			
		し多額のコストやリスクを伴う産業や投資段階から製品にとっ			
		て重要な要素が変わらない場合である。)。			
9	参入可能性	現在市場で大きなビジネスを行っている競合企業よりも、潜在的	(既存企業よりも)潜在的な参入	Baker (2019)	17③
	(潜在的な参	な競合企業の方がイノベーションのライバル関係は強く、現在市	者の方がイノベーションのライバ		
	入者)	場で実質的なビジネスを行っている企業が潜在的な競合企業を	ル関係が強いため、当該企業を買		
		買収した場合、買収された企業の研究開発を閉鎖するインセンテ	収する場合、買収後に当該企業の		
		ィブを持つ(<mark>置換効果、Business Stealing 効果の喪失</mark>)可能性	研究開発を閉鎖するインセンティ		
		がある。	ブ(置換効果(共食い効果)、		
			Business Stealing 効果の喪失)		
			がある。		
10	イノベーショ	合併当事者が、互いに現在の製品と将来の製品の両方を含む大き	企業結合をしなければ当事会社の	Dow/Dupont EC (2017)	15③
	ン転換率	な売上げを獲得する可能性があるという「 <mark>イノベーション転換</mark>	一方から奪えたであろう期待収益	Annex4	
		率」が高い場合(パイプラインが重複する場合など)、イノベー	(イノベーション転換率)が大き	Fedelico, Langus, Val	
		ションへの影響が大きい(<mark>置換効果</mark> が大きい)。	い場合、置換効果(共食い効果)に	etti (2018)	
			よって、企業結合は研究開発イン		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
11	イノベーショ	合併せずにイノベーションが成功した場合に当事会社の一方か	センティブを大きく減少させる。	Gilbert (2020)	15③
	ン転換率	ら奪えたであろう収益(<mark>イノベーション転換率</mark>)が大きい場合、			
		置換効果により、合併は研究開発インセンティブを大きく減少さ			
		せる。			
12	イノベーショ	合併当事者間で、相手方のイノベーションにより利益が減少する		Gilbert (2020)	15③
	ン転換率	リスクのある製品を相互に有する場合、合併により <mark>置換効果</mark> が高			
		まる。			
13	イノベーター	限られた数の有能なイノベーターのうちの2社が参入障壁の高	重要なイノベーターの企業結合の	Dow/Dupont EC (2017)	15③
	としての重要	い市場においてが合併した場合には、(<mark>置換効果</mark> を通じた) イノ	場合は、置換効果(共食い効果)を	Annex4	
	度	ベーションへの影響は顕著である。	通じた研究開発インセンティブへ	Fedelico, Langus, Val	
			の影響が顕著である。	etti (2018)	
				Kokkoris, Valletti	
				(2020)	
14	イノベーター	(合併による <mark>置換効果</mark> により)既存の製品ポートフォリオとパイ		Dow/Dupont EC (2017)	16
	としての重要	プラインをまとめることで、将来のパイプライン製品が廃止され		Annex4	
	度	る可能性があることから、重要なイノベーター間の合併は研究開			
		発努力が損なわれる可能性がある。			
15	企業結合の当	限られた数の有能なイノベーターのうちの2社の合併により、限	限られた数のうちの2社のイノベ	Fedelico, Langus, Val	24②
	事者が限られ	られた知識について <mark>スピルオーバーの内部化</mark> がされた場合、これ	ーターの企業結合の場合、スピル	etti (2018)	
	た数のイノベ	を相殺するような研究開発効率の向上が存在しない場合はイノ	オーバー効果(波及効果)が内部		
	ーター	ベーションの減少につながる。	化・減少するため、イノベーショ		
			ンの減少につながる。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
16	研究開発の重	製品と研究開発プロジェクト間の合併は、これらが重複する場	既存製品と市場に投入されていな	Gilbert (2020)	15②
	複性	合、プロジェクトの成功による期待収益が合併前と比べて減少す	いプロジェクト段階との重複が生	※Baker (2019) でも	
		るため、 <mark>置換効果</mark> により研究開発インセンティブを低下させる可	じる企業結合の場合、プロジェク	Gilbert モデルとして	
		能性があり、また、重複するプロジェクト間の合併は一方のプロ	トが成功すると期待収益が減少す	言及	
		ジェクトを中止したり進行を遅らせたりするインセンティブを	るため、置換効果(共食い効果)に		
		生じさせる。	より研究開発インセンティブを低		
17	研究開発の重	製品が重複している企業による買収は、 <mark>置換効果</mark> により買収した	下させる。	Gilbert (2020)	15③
	複性	研究開発プロジェクトを中止するインセンティブが高い。	また、重複するプロジェクト間の		
18	研究開発の重	当事者双方の研究開発が重複する場合、すなわち成功した場合の	企業結合も、一方のプロジェクト	Jullian, Lefouli	15③
	複性	製品の代替性が大きい場合、 <mark>置換効果により</mark> 一方の研究開発投資	を中止又は遅延させるインセンテ	(2018)	
		を減らすインセンティブが生じる。	ィブを生じさせる。		
19	パイプライン	パイプラインが重複する場合、売上げの共食い(<mark>置換効果</mark>)や開		Dow/Dupont EC (2017)	16
	の重複	発コストが大きいほど、いずれかのパイプラインを廃止または遅		Annex4	
		延させるインセンティブが高まる。			
20	製品間の重複	合併当事者間で代替性のある製品を有していなくても、一方のイ		Gilbert (2020)	15⑤
	性	ノベーションにより利益が奪われるリスクがある場合は <mark>置換効</mark>			17②
		果が働く。合併当事者間で代替性のある製品を有している場合は			
		合併により価格や利益が上昇することで <mark>置換効果</mark> は更に高まる。			
21	保有技術の代	合併当事者間で代替技術を有する場合の水平合併は(<mark>置換効果</mark> に		Katz, Shelanski	15③
	替性	より)研究開発は大きく減少し、効率性の向上は特に小さい。		(2007)	

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
22	企業結合の相	(製品間で代替性がある場合、)合併企業の1社によるイノベー	製品間の代替性を有する結合企業	Fedelico, Langus, Val	15⑤
	手方企業のイ	ションは相手方企業がイノベーションを起こした場合もそうで	の一方のイノベーションは、相手	etti (2018)	17②
	ノベーション	ない場合も相手方企業の売上を減少させる。前者の場合はイノベ	方企業のイノベーションの有無に		
		ーション後の収益性の高い売上げを共食い <mark>(置換効果)</mark> し、後者	かかわらず置換効果(共食い効果)		
		の場合はイノベーション前の売上げを共食い <mark>(置換効果)</mark> する。	により相手方企業の売上げを減少		
			させる。イノベーションを起こし		
			た場合はイノベーション後の売上		
			げを、起こさない場合はイノベー		
			ション前の売上げを共食いする。		
23	研究開発投資	当事者双方の研究開発が重複し、 <mark>置換効果</mark> により一方の研究開発	当事会社間の研究開発の重複によ	Jullian, Lefouli	15③
	の減少とリタ	投資を減らしても、当該一方の研究開発投資の減少によるリター	り一方の研究開発投資を減らすイ	(2018)	
	ーンの関係	ンの減少が小さい場合は、もう一方の研究開発投資を増やす可能	ンセンティブが生じるが、当該一		
		性があり、合併せずに個々の企業のままだと研究開発投資が少な	方の研究開発投資を減らしても期		
		い場合と比べてイノベーションが生じる可能性が高まる。	待収益が余り減らなければ、もう		
			一方の研究開発投資を減らさない		
			(増やす) 可能性がある。		
24	技術レベル	競争が激しくなると <mark>(競争脱出効果</mark> が限定的である)後発企業の	市場が競争的になると、技術レベ	Jullian, Lefouli	21②
		研究開発インセンティブが低くなる。	ルが高い(他の企業と同等な)企	(2018)	
25	技術レベル	技術が最先端から遅れている企業は市場が競争的であっても研	業は競争脱出効果により研究開発	Gilbert (2020)	21②
		究開発インセンティブは低く、企業が技術的に同等な場合は市場	インセンティブが高まるが、技術	Katz, Shelanski	
		が競争的であれば <mark>競争脱出効果</mark> により研究開発インセンティブ	レベルが高くない企業は、競争脱	(2007)	
		は高まる。	出効果が限定的であるため研究開	Igami, Uetake (2020)	
			発インセンティブは低くなる。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
26	達成可能なイ	(<mark>競争脱出効果</mark> により) イノベーション前の競争激化は研究開発	イノベーション前に競争が激しく	Jullian, Lefouli	20②
	ノベーション	インセンティブを高め、イノベーション後の競争激化は研究開発	なると、競争脱出効果により研究	(2018)	
	の程度	インセンティブを低下させる (Shapiro (2012))。	開発インセンティブが高くなるー		
			方、イノベーションの程度が、イ		
			ノベーション達成によっても競争		
			が緩和できないと予想される程度		
			の場合は、競争脱出効果は限定的		
			となり、研究開発インセンティブ		
			は低くなる。		
27	知的財産権	知的財産権が存在する場合は、企業数が多く競争が激しい場合で	知的財産権が存在する場合、専有	Kokkoris, Valletti	62
		も模倣リスクが減って <mark>専有可能性</mark> が確保されることから、研究開	可能性が確保されるため、(競争が	(2020)	
		発インセンティブが高まる。	激しくても)研究開発インセンテ	Dow/Dupont EC (2017)	
			ィブが高まる。すなわち企業結合	Annex4	
28	知的財産権	産業が知的財産権によって守られていれば(合併により <mark>専有可能</mark>	をしても専有可能性が高まらず、	Kokkoris, Valletti	62
		性が高まるものではないため)合併の懸念は相対的に高くなる。	研究開発インセンティブは高まら	(2020)	
		他方、イノベーションの利益を当事会社が直接得ていなくても競	ない。		
		合企業に利益が生じる場合(非自発的なスピルオーバー(波及効			
		果)が生じる場合)は、懸念は相対的に低くなる。			
29	波及・模倣の	イノベーションからの <mark>波及効果</mark> や模倣が限定的であると競争の	イノベーションからのスピルオー	Dow/Dupont EC (2017)	62
	可能性	程度に関係なく <mark>専有可能性</mark> が高いため(合併に無関係であるた	バー効果(波及効果)や模倣が限	Annex4	
		め)、合併による当事会社間のイノベーション競争の排除による	定的である場合、専有可能性が確		
		研究開発インセンティブの低下を相殺しない。	保されるため、(競争が激しくて		
			も)研究開発インセンティブが高		
			まる。すなわち企業結合をしても		
			専有可能性が高まらず、研究開発		
			インセンティブは高まらない。		

[※]メカニズム番号欄は資料4第2の番号

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
30	知的財産権	強力な知的財産権(及び高い合併前 <mark>専有可能性</mark>)があっても、あ	知的財産権による専有可能性が高	Dow/Dupont EC (2017)	20②
		る企業の革新的な製品が他の企業の関連する革新的な製品から	いかどうかにかかわらず、他社か	Annex4	
		売上げを奪わないことを意味しない。競争が激しければ企業は利	ら売上げを奪うことはできるた		
		益を生み出すために競合製品よりもよい(又は異なる)製品と生	め、競争が激しければ競争脱出効		
		み出すために(<mark>競争脱出効果</mark> により)イノベーションを起こす必	果により研究開発インセンティブ		
		要がある。	は高い。		
31	知的財産権	知的財産権が弱く、模倣・複製によるフリーライドが可能である	知的財産権が弱く模倣ができる場	Katz, Shelanski	61
		場合(非自発的なスピルオーバーが生じる場合)、企業は自ら積	合(非自発的なスピルオーバーが	(2007)	
		極的にイノベーションを起こす研究開発インセンティブが低い	生じる場合)、イノベーションの主		
		が、合併によりフリーライド問題を解消する(スピルオーバー効	体企業においては研究開発インセ		
		果の内部化)ことで研究開発インセンティブは高まる。	ンティブが低いが、競合企業のイ		
32	知的財産権	競合企業が知的財産権を侵害することなく新製品を模倣できる	ンセンティブの上昇が期待でき	Fedelico, Morton, Sha	6①
		場合、合併により <mark>スピルオーバー効果</mark> を内部化することで、研究	る。	piro (2019)	
		開発インセンティブの低下を部分的又は完全に相殺することが	他方、当該競合企業との企業結合		
		できる可能性がある。	によるスピルオーバー効果(波及		
33	知的財産権	知的財産権が弱いと模倣が行われることで競合企業への <mark>波及効</mark>	効果)の内部化によって、イノベ	Jullian, Lefouli	6①
		果(スピルオーバー効果)が生じるが、これはプロセス・イノベ	ーションの主体企業における研究	(2018)	
		ーションよりもプロダクト・イノベーションで生じやすい。	開発インセンティブは高まる。		
34	知的財産権	知的財産権が強い場合でも、研究者の移動や学会での発表、特許	知的財産権が強い場合でも、他の	Jullian, Lefouli	6①
		から得た知識を基に特許権を侵害しない方法で新製品や新プロ	手段によって競合企業へのスピル	(2018)	
		セスを開発する逐次イノベーションによる <mark>波及効果 (スピルオー</mark>	オーバー効果(波及効果)が生じ		
		<mark>バー効果)</mark> は生じ得る。	得る。		
35	知的財産権	知的財産法による適切な権利保護や知識・技術の流出防止を前提		齊藤(2022)「イノベー	61
		として、知識・技術の伝播による研究開発を促進する <mark>スピルオー</mark>		ション論の展開と課	
		<mark>バー効果(波及効果)</mark> が期待される。		題」	

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
36	波及・模倣の	複数の企業が存在し、イノベーションの他の企業への波及が防げ	企業が多数存在することなどによ	Dow/Dupont EC (2017)	6①
	可能性	ない場合は、参入企業を締め出すことによる利益を十分に内部化	り、企業結合によってもスピルオ	Annex4	
		できず <mark>専有可能性</mark> が低くなるため、 <mark>先取り効果</mark> は著しく弱くな	一バー効果(波及効果)が残存す		
		る。	る場合は、企業結合による研究開		
			発インセンティブの上昇は期待で		
			きない。		
37	波及効果	競争があまり激しくない場合(企業間の協調が強い場合)、 <mark>波及</mark>	企業間の協調が強ければ(競争脱	Dow/Dupont EC (2017)	22①
		<mark>効果</mark> がなければプロセス・イノベーションのレベルが低くなるた	出効果や先取り効果(レント消失	Annex4	
		め、消費者に不利益をもたらす。競合企業が協調する場合、イノ	効果) が弱いため)、スピルオーバ		
		ベーションの努力を減らすことで、競合企業に対するイノベーシ	一効果(波及効果)がなければ、プ		
		ョンの効果を部分的に内部化する。この効果は、製品市場競争の	ロセス・イノベーションは低下す		
		減少による(イノベーションへの)効果を上回る。	る。		
38	イノベーショ	<mark>先取り効果</mark> は、現状を維持しようとするインセンティブが強いこ	不確実なイノベーションの場合は	Dow/Dupont EC (2017)	5
	ンの種類(不	とを前提としているため、不確実なイノベーションの場合はその	先取り効果(レント消失効果)が	Annex4	
	確実なイノベ	ような前提が当てはまらない場合があり、結果が逆転する可能性	生じずに研究開発インセンティブ		
	ーション)	がある。	が高まらない可能性がある。		
39	イノベーショ	研究開発の不確実性という理由から、イノベーションは価格に比	イノベーションの不確実性が高	Katz, Shelanski	22③
	ンの種類(不	して協調が行われにくいため、合併によってイノベーションに関	い、成果の秘匿可能性が高い、成	(2007)	
	確実なイノベ	する協調行為の危険性(<mark>協調効果</mark>)が増す可能性は低い。	果が出るまでに長期間を要すると		
	ーション)		いった場合には、イノベーション		
40	イノベーショ	イノベーションの不確実性という特徴により、イノベーションに	に関する協調的行動は起こりにく	Gilbert (2020)	22③
	ンの種類(不	関する協調行為(<mark>協調効果</mark>)は価格に関する協調行為よりも起こ	U _o		
	確実なイノベ	りにくい。			
	ーション)				

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
41	イノベーショ	研究開発の成果の秘匿の可能性が高いという理由から、イノベー		Katz, Shelanski	22③
	ンの種類(成	ションは価格に比して協調が行われにくいため、合併によってイ		(2007)	
	果の秘匿可能	ノベーションに関する協調行為の危険性 (<mark>協調効果</mark>) が増す可能			
	性)	性は低い。			
42	イノベーショ	研究開発の成果が出るまでの時間が長いという理由から、イノベ		Katz, Shelanski	22③
	ンの種類(成	ーションは価格に比して協調が行われにくいため、合併によって		(2007)	
	果が出るまで	イノベーションに関する協調行為の危険性(<mark>協調効果</mark>) が増す可			
	の時間)	能性は低い。			
43	イノベーショ	プロダクト・イノベーションの場合、プロセス・イノベーション	プロダクト・イノベーションの場	Dow/Dupont EC (2017)	62
	ンの種類(プ	とは異なり規模の経済や範囲の経済が重要ではないため競争の	合はプロセス・イノベーションと	Annex4	
	ロダクト・イ	程度に関係なく <mark>専有可能性</mark> が高いため(合併に無関係であるた	異なりそもそも専有可能性が高い		
	ノベーショ	め)、合併による当事会社間のイノベーション競争の排除による	ため、企業結合によって専有可能		
	ン)	研究開発インセンティブの低下を相殺しない。	性が高まらず、研究開発インセン		
			ティブが高まるものではない。		
44	イノベーショ	医薬品や農薬など、プロダクト・イノベーションが重視される分	プロダクト・イノベーションが重	斎藤 (2022)「イノベー	_
	ンの種類(プ	野においては、 <mark>シナジー効果</mark> や <mark>スピルオーバー効果</mark> などの競争促	要である分野では、シナジー効果	ション論の展開と課	
	ロダクト・イ	進効果がイノベーションを阻害する効果を上回る可能性は低い。	(補完効果) やスピルオーバー効	題」	
	ノベーショ		果(波及効果)などの競争促進効		
	ン)		果がイノベーションに対する弊害		
			を上回る可能性は低い。		
45	イノベーショ	破壊的イノベーションの可能性がある場合、(<mark>先取り効果</mark> は低く	破壊的イノベーションの場合は先	Dow/Dupont EC (2017)	5
	ンの種類(破	なり、)既存企業よりも参入企業の方が、研究開発インセンティ	取り効果(レント消失効果)が低	Annex4	
	壊的イノベー	ブが高まる可能性がある。	く、既存企業は潜在的参入企業よ		
	ション)		りも研究開発インセンティブが低		
			い可能性がある。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
46	イノベーショ	イノベーションが市場構造自体を変化させる可能性があるとい	破壊的イノベーションは、市場構	Gilbert (2020)	22③
	ン種類(破壊	う特徴により、イノベーションに関する協調行為(<mark>協調効果</mark>)は	造自体を変化させるため、イノベ		
	的イノベーシ	価格に関する協調行為よりも起こりにくい。	ーションに関する協調的行動は起		
	ョン		こりにくい。		
47	イノベーショ	勝者総取りとなるイノベーションが起きた場合、次のイノベーシ	勝者総取りのイノベーションが起	Gilbert (2020)	62
	ンの種類(勝	ョンによる利益は0であるため、独立企業であっても合併当事者	きた後は、企業結合をしても次の		
	者総取り型の	であっても合併は研究開発インセンティブに影響しない。	イノベーションを起こす研究開発		
	イノベーショ		インセンティブに影響しない。		
	ン)				
48	イノベーショ	垂直的な差別化(高品質化)につながるイノベーションの場合は	高品質化につながるイノベーショ	Jullian, Lefouli	15②
	ンによる製品	<mark>置換効果</mark> により競合企業の売上げを奪う(ため <mark>置換効果</mark> が大き	ンの場合、置換効果(共食い効果)	(2018)	
	の差別化の種	い)が、水平的な差別化(異なる顧客へのアピール)につながる	により研究開発インセンティブは		
	類	イノベーションは、他方当事会社にとって価格競争の緩和を通じ	低下する。		
		て有益となるため合併によりそのような研究開発に投資するイ	一方、製品差別化につながるイノ		
		ンセンティブを高める。	ベーションの場合は、他方当事会		
			社にも有益(イノベーション転換		
			率が低下する)であることから、		
			結合企業の(そのような)研究開		
			発インセンティブが高まる。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
49	製品間の価格	差別化された製品を持つ企業間の合併においては、両製品の価格	差別化された製品を有する企業の	Jullian, Lefouli	15②
	調整	を調整することによって、双方がイノベーションを起こした場合	結合において、価格を調整するこ	(2018)	
		の共食い(<mark>置換効果</mark>)を軽減し、双方のイノベーションを起こし	とで、置換効果(共食い効果)を軽		
		た方が一方のみの場合よりも高い利益を得ることができる場合	減し、双方のイノベーションを起		
		(合併して2つのイノベーションを起こした場合の利益が、合併	こした方が一方のみの場合よりも		
		せずに双方がイノベーションを起こした場合よりも大きい場合)	高い利益を得られるができるので		
		には、研究開発インセンティブは高まる。	あれば、研究開発インセンティブ		
			を高める。		
50	製品間の価格	合併により当事者の製品間で価格調整することで、製品市場にお	結合企業の製品間で価格調整する	Fedelico, Langus, Val	13
	調整	けるイノベーション前の利益がイノベーション後の利益よりも	ことでイノベーション前の利益が	etti (2018)	
		大きくなる場合は研究開発インセンティブに下方圧力をもたら	イノベーション後よりも大きくな		
		す。	る場合は、研究開発インセンティ		
			ブは低下する。		
51	研究開発単位	研究開発に従事する企業数を一定以上に保つことで、実質的な知	一定以上の研究開発単位を保つこ	Baker (2019)	_
	の数	識の <mark>スピルオーバー</mark> が将来の製品競争の可能性を高める。	とで、スピルオーバー効果(波及		
			効果)による将来の製品競争の可		
			能性が高まる。		
52	研究開発単位	当事者以外に、当事会社の製品と代替する製品の研究開発に着手	企業結合の当事会社以外に同等の	米国知財 GL	_
	の数	する同等の能力とインセンティブを有する独立した競争業者が	能力を有する研究開発単位が一定		
		存在する場合、通常、関連する研究開発市場の競争に影響を及ぼ	数(5~6以上)存在する場合は、		
		す可能性は低い。	研究開発市場の競争に影響を及ぼ		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
53	研究開発単位	合併後に市場に少なくとも5つか6つの独立した研究経路が残	す可能性は低い。(ただし、企業結	Baker (2019)	_
	の数	っている限り、合併による研究開発の損失は一般的にイノベーシ	合の当事者間では置換効果(共食	Gilbert (2020)	
		ョンの成功の可能性に影響しないが、その場合でも新製品の開発	い効果)によるイノベーション減		
		が成功すれば企業の既存製品から得られる利益が共食いされる	少はあり得る)。		
		ため(<mark>置換効果</mark> により)、イノベーションに悪影響を及ぼす可能			
		性がある。			
54	保有技術の補	合併当事者間で補完的技術を有する場合は(<mark>シナジー効果</mark> によ	企業結合の当事者間で補完的技術	Katz, Shelanski	12①
	完性	り)研究開発は増加する。	を有し、技術や知識の移転が行わ	(2007)	
			れる場合は、シナジー効果(補完	Fedelico, Morton, Sha	
			効果)が生じて効率性が向上し、	piro (2019)	
			研究開発インセンティブが高ま		
			る。		
55	企業カルチャ	事業間に重複があっても製品仕様や生産技術などが異なる場合、	企業結合により、技術、ノウハウ、	小田切(2016)	124
	一の相違・技	合併による両社の資源等が結合され、 <mark>シナジー効果(補完効果)</mark>	人材、知識の資源が結合されるこ		
	術利用の優先	が生じることにより、イノベーションを効率的にする可能性があ	とによるシナジー効果(補完効果)		
	度	る。	は、複数の部品が組み合わされる		
		他方、カルチャーの違い、合併当事者の技術利用の優先等により、	ことで価値が生み出される産業や		
		イノベーションが促進されない可能性がある。	単独でイノベーションを起こせな		
		→過去の合併の事後評価 (小田切ほか 2011 「企業結合の事後評価	い産業において特に重要である。		
		-経済分析の競争政策への活用」) では研究開発集約度や特許公	一方、企業カルチャーの違い、企		
		開件数はいずれも合併後に低下したケースが過半を占めた。	業結合の当事者の技術利用の優先		
56	産業の特性	企業結合により、技術、ノウハウ、人材、知識を融合、内部化す	等により、イノベーションが促進	齊藤(2022)「イノベー	12①
	(技術集積型	ることで <mark>シナジー効果</mark> が期待でき、資源の補完性がある場合に <mark>シ</mark>	されない可能性もある。	ション論の展開と課	
	産業等)	ナジー効果は有効である。複数の部品が組み合わされることで価		題」	
		値が生み出される産業や単独でイノベーションを起こせない産			
		業において特に重要である。			

[※]メカニズム番号欄は資料4第2の番号

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
57	産業の特性	市場が拡大していればイノベーションにより迅速な参入や市場	成長市場(市場拡大段階)におい	独カルテル庁レポー	22②
	(成長産業)	シェアの変動が可能であるため、協調的な行動(<mark>協調効果</mark>)は起	ては参入や市場シェアの変動可能	٢	
		こりにくい。	性が高いため、協調的行動は起こ		
			りにくい。		
58	生産効率の向	生産効率が大幅に向上すれば総生産量が増えて利潤が拡大する	企業結合により、生産効率の向上	Jullian, Lefouli	2③
	上可能性	可能性がある。この <mark>マージン拡大効果</mark> は合併後のプロセス・イノ	を通じて生産量を増やせる場合、	(2018)	
		ベーションへの投資につながる。十分な効率性があれば合併のプ	マージン拡大効果により、プロセ		
		ロセス・イノベーションに及ぼす潜在的な悪影響に関する懸念が	ス・イノベーションへの投資につ		
		取り除かれる。	ながる。		
59	生産効率の向	生産効率の向上がなければ、(<mark>マージン拡大効果</mark> が生じず)水平	逆に、生産効率の向上がなければ、	Jullian, Lefouli	23
	上可能性	的な合併は価格の上昇と生産量の減少につながる。生産量が小さ	企業結合により価格上昇と生産量	(2018)	24
		ければコスト削減技術に投資することによる企業の利益は小さ	の減少が生じるところ、生産量が		
		い。そのため、合併によって合併企業がプロセス・イノベーショ	小さければコスト削減努力による		
		ンに向けた研究開発に投資するインセンティブを低下させる可	利益も小さいため、プロセス・イ		
		能性がある。	ノベーションに向けた研究開発イ		
			ンセンティブが低下する。		
60	投入物閉鎖·	潜在的企業を含めたイノベーションのライバル同士の合併は、投	イノベーションのライバル同士の	Baker (2019)	_
	顧客閉鎖・対	入物・顧客閉鎖や、将来の競争を見越してより積極的な競争を行	企業結合により、投入物閉鎖・顧		
	抗的行動の可	う可能性があると競合他社(非当事会社)を脅したりすることで、	客閉鎖や、対抗的行動の表明によ		
	能性	競合他社のイノベーションに害を及ぼす可能性がある。	って、競合企業(非当事会社)のイ		
			ノベーションを阻害する可能性が		
			ある。		

番号	要素	影響メカニズムに関連する記載(概要)	要素が左右する傾向	参照元	メカニズム 番号
61	スイッチング	競合製品へのスイッチングコストの増加により顧客を囲い込む	企業結合により競合製品へのスイ	Baker (2019)	_
	コストの高さ	ことで競合企業を排除する可能性がある。他方、新規顧客や競合	ッチングコストを高め、顧客を囲		
		企業の顧客は合併企業が後から値上げしたり、アップグレードを	い込む場合は、競合企業が排除さ		
		遅らせたりすることをおそれ、合併企業の製品を選択することに	れる可能性がある。		
		消極的になるかもしれず、これは合併企業の反競争的戦略の採用	他方で、(スイッチングコストが低		
		を妨げることもある。	ければ)顧客が結合企業の値上げ		
			やアップグレードの遅延を敬遠し		
			て取引を避ける可能性もあり、こ		
			れにより結合企業による反競争的		
			な行為が行われにくくなる可能性		
			がある。		
62	当局の介入	キラー買収を禁止すると、開発の収益化のために買収に依存して	キラー買収の禁止は、買収される	Gilbert (2020)	9
		いる企業の研究開発投資のインセンティブ(<mark>バイアウト効果</mark>)を	ことで収益化を図る企業のバイア		
		破壊し、悪影響を及ぼす可能性がある。	ウト効果を失わせ、当該企業の研		
			究開発インセンティブを低下させ		
			る。		